m
Fl'anCIS GlaSSbOI'OW with Roberta Allen

You Can Do It!

A Beginner’s Introduction to Computer Programming

(e’ ;’

Get programming within
the hour! All you need is:
aPC
Windows (98 or later)
this book/CD-ROM

A Beginner’s Introduction to Computer
Programming

You Can Do It!

Francis Glasshorow
with Roberta Allen

Wiley & Sons, Ltd

www.manara

www.manara

A Beginner’s Introduction to Computer
Programming

Francis Glasshorow
with Roberta Allen

www.manara

www.manara

A Beginner’s Introduction to Computer
Programming

You Can Do It!

Francis Glasshorow
with Roberta Allen

Wiley & Sons, Ltd

www.manara

Copyright © 2004 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, scanning or otherwise, except under the terms of the Copyright, Designs and
Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency
Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of
the Publisher, with the exception of any material supplied specifically for the purpose of
being entered and executed on a computer system for exclusive use by the purchase of the
publication. Requests to the Publisher should be addressed to the Permissions Department,
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ,
England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the Publisher is not engaged
in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Glassborow, Francis.

A beginner’s introduction to computer programming : you can do it! /
Francis Glassborow.

p. cm.

Includes bibliographical references and index.

ISBN 0-470-86398-6 (Paper : alk. paper)

1. Computer programming. I. Title.

QA76.6.G575 2003

005.1 —dc22

2003020686

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-86398-6

imited, Chennai, India

King’s Lynn

manufactured from sustainable forestry
> used for paper production.

www.manara

Dedication

This book is dedicated to the many colleagues and numerous students who moulded me into a better teacher.
In particular my first Head of Department, Gerry Astell, who taught me never to teach something that I knew
I would later retract. False simplicity is never helpful to the student in the long run; it just makes a poor
teacher’s life easier for a moment.

www.manara

www.manara

HowtoUse ThisBook. i
Study Elements
End of Chapter Elementsttt e
Endof the BoOk oot

The CD ..
Why fgw?

Introduction

Before Purchase it

Why C++42

Getting the Best from This BOOK. oot e
What You Will Achieve e e
Notes for StUdents o vt e e e
NOtes fOr INSIIUCIOTS .+« & v v v e
Personal Introductions v v it e e e

Acknowledgments

1 YouCanProgram e
What Is Programming?ttt
Introduction to Your Programming Tools.
Our First Program e
Elements of CH=4 Programsttt
A Playpen Doesn’t Have ToBe White
Plotting a Point e
Mixing Colors e
Modern Art?
Tasks, Exercisesand Fun. e
Roberta’s COMMENESottt e e e e e

Summary

xiii
Xiv
Xiv
XV
XV
XVvi

xvii
Xvii
Xviii
xviii
XX
XX
XX
xxi

xxiii

www.manara

CONTENTS

2 YouCanLoopo e 21
Drawing a CrOSS . . . o o oottt et 21
O -LO0DS .« . e e 22
Drawing a Cross Revisited e 26
Practicing Looping 27
Simple Arithmetic Operatorsot 28
Roberta’s COMMENES v ottt ettt e e e e e e e e 31
Solutions to EXEIcises 32
SUMMATY e 33

3 YouCanWriteaFunction 35
Drawing a Square 35
The Function CONCEPL o v vttt i e e e e e e e 36
Functionsin CHo e 37
Writing a FUnCtiono e 38
Header and Implementation Files o 42
Drawing Lines e e 44
Drawing Sets of LINESottt e 47
Creating Your Own Utility Functionst ... 50
Roberta’s COMMENES ottt ittt e e e 51
Solutions to EXEICISes oo ittt 51
SUIMIMATYo e 52

4 YouCanCommumicate 55
Names and NameSPaces o oot v v vttt ettt et e e e e e e 55
Interaction 56
The charand int Typeso e 57
SIFEAIMS .« v v v vt e 59
The string Type o oo 61
Creating a Simple Dialog 61
Sequence CONEAINEIS ittt ittt e e e e 63
Walkthrough 65
Getting ints from the Keyboard 69
Handling the Unexpected 70
Roberta’s COMIMENITS . . . o o vttt et e et e e e e e e et e e e e e 74
HInts . . o e 74
Solutions to EXercises 74
SUMMATY 81

5 YouCanCreatea Type oo ittt e 83
On Not Being Underrated 83
Designing a TYPe 84
The doubTe Type oo 85
Creating a Two-Dimensional Point Type 87
Roberta’s COMMENES o vttt e e e e e 101
Solutions to EXEICISes oo ittt 101
SUIMIMATY 101

6 YouCanUsepoint2d e 105
Adding Functionality with Free Functions. 105
Supporting I/O for point2d 107

www.manara

Drawing Linesand Polygons 108
Drawing Regular Polygons e 113
ATypeand an Origin 115
Roberta’s COMIMENITS . . . o o vt vttt et e e e e e e e et e e e e 117
Hints . . .o e 117
Solutions to Tasks oo 118
Solutions to EXEICises i 124
SUIMIMATY . . . o 126

7 YouCanHaveFun 127
Valuing Your Skills 127
JUStTOr FUDL. .« . . o o e e e e 127
Fun Programming Ideas 130
Looking Forward 130

8 YouCanWriteaMenu 135
Offering a Set of ChoiCes oottt e 135
Dealing with Dependencies 145
Functions that FillaPolygon 148
Roberta’s COMIMEIIS . . . o o vttt et e e e e e e e et e e e 151
Solutions to Tasks oL 151
Solutions to EXeIcisest 153
SUMMATY 153

9 YouCanKeepData e 155
Saving and Restoring Images 155
Using Captured Datao oot 157

A Menu-Driven Program with Persistence o 161
Further Practice e 169
TETatorS o 169
Before the Next Chapter 173
HInts . . o e 174
Solutions to Taskso 174
SUMMATY e 182
10 Lotteries, Ciphersand Random Choices 185
Random and Pseudo-Random Sequences 185
Algorithms for Random Numbers. L 186
Understanding a Lottery Program 187
Sending Hidden Messages 196
OVEr tO YOU . . . oo 201
Roberta’s COMMENESottt e e 202
Solutions to Tasks L 204
SUIMIMATY o o e 205
11 Keyboardsand Mice 207
AKeyboard Typeo 207
UsingaMOUSE vttt 213
Refactoring Code oottt 217
More Practice e 220
RODErta’s COMIMENTS « . o & vt v ettt et e e e e e e e e e 222

www.manara

CONTENTS

SOlUtionS tO EXETCISES . . v v v v ot e e e e e e e e 222
SUMIMATY . . . o o 227
12 APotPourriSpicedwithBitset o o 229
Computing a List Of Primes o .ottt e 229
A Weaving Simulation L 235
Dr Conway’s Game of Life e 239
Roberta’s COMIMEIITS .« . v v v v vt e 246
Solutions to Tasks o i i e e e e 246
SUIMIMATY . . . o oo e e e 247
13 How Many...? in WhichSetand MapLendaHand 249
What Is an Associative CONAINET? v v v v i e e e e e e e e e e e e e e 249
What Is @ Set? . o . ot e e e 249
WhatIsa Map? e 253
Roberta’s COMIMENTSt vttt e e e e e e e e e e e e e e 257
Solutions to Tasks oo e 257
SOlUtIONS tO EXETCISES .+ . v v v v it e e e e e e e e e e e e e e e e 258
SUIMIMATY . . . o o ot e e e e 261
14 Getting, Storing and Restoring GraphicalItems 263
Preparing to Program 263
Icons, Sprites and Related Ttems L 264
Making a Font 271
Displaying a Stringinthe Playpen. 277
Roberta’s COMIMEIILS &« . v v v v vt e 278
Solutions to Tasks o i e e e 278
SOlUtionS tO BXETCISES . . v v v v o e e e e e e e e 283
SUIMIMATY . . . o ot e 286
15 Functions as Objects and Simple Animation, ... 287
Functions that Remember e e e 287
First Steps to Animation 296
AMatter of Palettes e 302
More Advanced ANImation v v it e e e e e e e e e 303
Roberta’s COMIMENTS\ vttt e e e e e e e e e e e e e e e e e 307
Solutions to Tasks o o o v e e 308
SOIUtIONS tO EXETCISES & v v v v v it e e e e e e e e e e e e e e e e e e 311
SUIMIMATY o e e e e 313
16 Turtlesand FatingYourOwn Tail. 315
Some History 315
Designing a Turtle Type. 316
Exploring Turtle Graphics 321
RecUrsion o e e e e e e e e 324
Wrapping It Up . . . e 326
Roberta’s COMIMENS\ttt e e e e e e e e e e e e e 328
Solutions to Tasks « . v v v v v i 328
SUMMATY 330

www.manara

17 YouCanProgram
What Use Is What You Have Learnit? o ottt it e e et e e e e e e
Games-Based Problems e
Analytical Problems
Mathematical Problems e
Conclusion
Where NeXt . . oo e

331
331
332
335
336
339
339

341

343

www.manara

www.manara

How to Use This Book

In my school days I used to read my science textbooks cover to cover in about a week to ten days from the
time they were issued to me. On the other hand, math textbooks took many months to read. Later in life I
found when studying a book that was pushing the boundaries of my knowledge that I usually stopped reading
after about six or seven chapters and took a few weeks, or even months, off before resuming my study by
quickly re-reading the first few chapters and then pushing on with the material that had been overwhelming
me first time round and moving on to new material, which would again eventually overwhelm me. I would
repeat this process until at the third or fourth shot I would finally finish the whole book.

I suppose that with more self-discipline I would take everything more gently and give myself time to
absorb new ideas before pushing on; it just isn’t my way. I am always impatient to move on and master new
things so I proceed more like the hare than the tortoise.

Which way you learn does not matter as long as you do not suffer from the illusion that acquiring new
skills is just a few days’ work. Factual textbooks such as those I had for science can be read in a few days or
weeks but we are unreasonable to expect to read a book that is designed to help us acquire a new skill in just
a couple of weeks.

Another feature of books introducing skills is that they have to assume the reader will practice. It is no
good reading a book about playing a flute if you wish to become a flautist. It may be technically possible to
read such a book in a few days but that would not turn you into any kind of musician. A single book on flute
playing takes many months to read effectively and at every stage you would read the book with your flute
readily to hand. You would practice and listen to good flautists.

This book is about acquiring a skill and so I have designed it to be used with a computer to hand. I have
also designed it to be studied at whatever pace you feel comfortable with. However I have designed the first
seven chapters to work together as a single block. The acceleration from Chapter 1 to Chapter 6 is quite high
and most readers will find that they need to take time to digest that material before continuing their studies. I
have written Chapter 7 as a natural break before you proceed with the rest of the book.

Each of the next six chapters (8 to 13) is a unit adding some new material and some new ideas. Many
readers will find that they want to take breaks after some or even all those chapters. During those breaks you
will want to use what you have learnt. Some readers will happily plough straight through in much the same
way that they read the first six chapters. That will be fine as long as you set a pace that gives you time to
absorb each of the new ideas and practice using them.

During the study of this middle part of the book you should take time out to think about how what you
are learning can be used to achieve tasks that interest you. That thinking time is best done away from the
book-and.the computer,(much of my,thinking is done waiting for buses, enjoying a hot bath or while eating
a meal).

Chapters 14 to 16 are different because their main objective is to consolidate your knowledge and skills
and show howwhat you havelearnt can be|put to use to do things that may look difficult. Roberta comments

www.manara

HOW TO USE THIS BOOK

that she felt that these chapters treated the reader as if they were now a programmer. She is right, and by that
stage in the book you definitely are a programmer, just an inexperienced one. These chapters both show you
what can be done with what you know and provide you some useful extras that you can use in your own
programming.

The last chapter has the same title as the first exactly because you will have come full circle. You start as
someone who has the potential to be a programmer and you finish as someone who knows they can program.

Whether you move from Chapter 1 to Chapter 17 like a hare or a tortoise or in some other way, getting
to the end is a new beginning and one where you will truly be able to declare “I can do it, I can program.”

Study Elements

There are various elements built into this book, all but one of which require your active participation. The
exception is that there are places where I give you an anecdote or an analogy to help you with your
understanding or motivation.

I use two ways of introducing you to new code. Sometimes I work through developing some code
writing about what I am doing at each stage. The purpose is to show you how programs come into existence
on a bit by bit basis. During that process I will expect you to work alongside me and create your copy of the
program by following in my footsteps.

Sometimes I will give you a finished piece of code and ask you to type it in and correct any typing
errors so that the program works. After you have done that I walk you through the code explaining what the
pieces do and how they work.

Why the two ways? Sometimes experiencing what a program does greatly aids in understanding how it
does it; at other times it is more important to learn how programs come into existence by actually following
the thought processes that lead to the finished program. Both ways are valuable to you.

During the course of working through this book you will come across items that are marked as “‘tasks’’.
These are things that you should do before going on with reading. Sometimes they will require you to write
a program; sometimes they will simply require that you do something exactly as described. However they
share the property that I consider doing them to be an inherent part of successfully reading this book.
Sometimes you may eventually have to look at a solution that I have provided but you should think of them
as hurdles that you should seriously try to cross without knocking over.

I have also provided exercises. I have tried to choose these so that doing them will help you develop
your programming skills without asking you to write dozens of repetitive programs that lead nowhere. In
general doing the exercises will be good for you but missing a few will not be a disaster. Your personal pride
should motivate you to do the exercises unless they have been marked as ones for specialists (there are a few
marked as “‘for mathematicians’’).

There are some places where I explicitly invite you to try something for fun. These are only a reminder
that you should be trying the ideas you find in this book and it should be fun. You should be trying things
that you want to show to others. You may be lucky enough to have an appreciative family, friends or
colleagues but if you haven’t (or even if you have) I want others to see your work and I invite you to send
me things you are proud of so they can be made public via the book’s website. Your best work will deserve a
wider audience so do not be too shy to put it forward.

End of Chapter Elements

Every chapter, bar the last, has an end of chapter section that contains one or more of the following elements:

Roberta’s,Comments: . In-which-my student author contributes whatever she feels like writing about the
chapter in hand. They are an example of something you might consider for yourself: keeping a diary of your
experiences. I hope that they will sometimes give you the consolation of discovering that someone else had
problems tooy/and sometimes-allow you to feel superior because you didn’t. However do not feel too

www.manara

HOW TO USE THIS BOOK

superior because the text you have is greatly improved over what she learnt from, largely because of the
effort she made to criticize my work in a positive way.

Hints: Sometimes I provide a hint for a task or exercise to help you succeed in doing the work yourself.

Solutions: Unlike most books, reading the solutions is not a way of cheating. I expect you to read the
solutions when they are provided. Studying the solutions is part of the correct use of the book. Not just
reading the solutions or trying them out, but understanding why they work and perhaps why they are
different from yours.

Summary: This is broken down under three headings. Key Programming Concepts contains the elements
of the chapter that are independent of the programming language. They are the general principles of
programming. C++ Checklist gives you a quick summary of the elements of Standard C++ (i.e. the
common core of C++ available everywhere) covered in the chapter. And finally there is the Extensions
Checklist which summarizes elements that I have added to C++ via the library I provide for you.

End of the Book

I could have added 100 pages to the end of this book by including printed appendices summarizing the C4++
language and library, my library, and details of the way the programming style of this book differs from
common C++ programming styles. Instead you will find a single printed Appendix A which lists common
errors that test readers had when trying to get their code to work.

The other four appendices and the glossary are on the CD that comes with the book. You can print
those out if you wish but they will not assist your early efforts when most of their contents will be of no
practical use to you.

You may find that there is a greatly extended glossary on the book’s website because I plan to add to it
in response to questions raised by readers such as yourself. If you meet a term that is puzzling you, check the
latest version of the glossary and if it is not there or it still puzzles you, email me and I will do my best to
respond promptly and helpfully.

The CD

The CD that comes with this book contains two elements. The first is the software needed by the reader. I will
put that more strongly: you should not use programming software that I have not provided either on the CD
or on the website; if you do then you are on your own. There are many excellent commercial programming
tools available but they are professional tools and as such they are designed to be used by professionals.

The second element is the appendices and glossary. These are provided as Microsoft Word and HTML
files. That means that you can print them or use them electronically. The former allows you to add your own
annotations and the latter makes it easy to search for a word or phrase.

Installing software from the CD: Unless you have switched off the auto start feature of Windows, the CD
should automatically start and lead you through the process of installing all you need. By default it will offer
to install in C:\tutorial. If you want to install to another drive just change the drive letter. You can install to a
different directory but I would encourage you not to do so. It will make it much easier to follow help
provided-by-others;if you-have everythingin the standard form provided on the CD. You can manage with
about 100 megabytes of disk storage but around about 250 megabytes will make it more comfortable and
save you from having to clean up intermediate working files from earlier chapters as you progress through
the book.

www.manara

HOW TO USE THIS BOOK

Why fgw?

In many places in this book fgw is used as an identifier or prefix. Roberta wondered why, was I dyslexic? This
is an example of a little thing that can nag at the back of the mind when we try to do something new. Once
we know the reason, however trivial, the irritation goes away. My initials are FWG but I always use fgw to
identify my work. The reason is that the school where I taught for almost twenty years identified staff by the
initials of their first and last names. Where that left ambiguity the final letter of the surnames was added.
There were three members of staff whose initials were FG so I was FGw. I came to feel most comfortable
with using fgw as my initials.

ol L) fyl_llsl

www.manara

Introduction

Before Purchase

If you are trying to decide whether to buy this book please read far enough to reach a conclusion. I will do
my very best to help you reach the right conclusion for you because delighted though I would be to have vast
sales figures I do not want you to waste your time and money buying something you later regret.

This is a unique book on the subject of computer programming because it has been written for
ordinary people and it attempts, I believe successfully, to make programming accessible to anyone with a
computer (at this stage, one running some version of Microsoft Windows), some curiosity about what
programming is and the willingness to spend some time satisfying that curiosity by learning to program.

This book is a collaboration between me as a technically knowledgeable and experienced teacher and
Roberta, whose qualifications were exactly those that a reader will need. Roberta’s contribution is small in
textual content and vast in helping me to write a book that can be used by someone whose computing skills
are just enough to load a program, use a word processor, use email and surf the Internet. When she started as
the student half of the authorial team, despite having used a computer for a decade she still had not grasped
the concepts of directory structures and the like. Her study of mathematics ended at 16 and her mathematical
skills more or less stop with simple arithmetic and those skills needed to keep a set of company accounts.

She had two positive qualifications; she wanted to discover what programming was about and she was
willing to trust me to show her. Both those are important. If you use this book you will need both those
qualifications. You need to be willing to put in time and effort to discover the rudiments of programming
and you need to trust us, Roberta and me, to help you achieve that ambition. However given those
qualifications we promise you that you can learn to program and that long before you finish this book you
will have written programs for yourself. As long as you have some imagination some of those programs will
be uniquely yours. Roberta had written her first entirely original program before she had finished Chapter 6
and by the time she had finished her studies she had written several programs for her grandchildren as well
as at least one following her own interests.

I tell you these things because I am certain that anyone who wants to can learn simple programming. I
also believe that many people will find programming rewarding in many ways. One of those is the
tremendous sense of achievement that any programmer gets whenever a program finally works and does
what it is designed to do.

If you browse through the pages of this book you may wonder if you could ever cope
with the weird things written in this font. There is no need to worry, you will soon find that all
that text is just a way to express intentions in a way that a computer can use, and that it isn’t at all weird. It
isn’t English though there is a scattering of English words in it. It is a computer language called C++
(pronounced cee plus plus). Friends, relatives and colleagues who know something about programming may

www.manara

INTRODUCTION

give you dire warnings on hearing that this book uses C++-. Believe me, they are well intentioned
but mistaken.

Why C++7?

Let me ask you a different question, “Why English?”” Well you know the answer to that; it is a language you
speak. Think a little further, what is the most widely spoken human language? Chinese is the mother tongue
for more people than any other language, so why am I not writing in Chinese? On the other hand languages
like Spanish and Swabhili are far easier to learn than English so why am I not writing in one of those?

As you know, English is not only the mother tongue of a few hundred million people but it is also the
second language for immensely more people. If you were an alien visitor to Earth I doubt that you would
think twice about which human language you should start with. For all its complexity English is
overwhelmingly the first choice language for those who want to move outside their own community.

CH+ is very like that in the computing community. It is a rich and complex language with dark
corners and traps for the unwary. But it is also the most widely used general-purpose computer
programming language. Few people, if any, ever master the whole of English and few people, if any, master
the whole of C++. But we do not need mastery of the whole of English nor do we need mastery of the
whole of C++. This is not a book about C++ and when you finish it you will not be a C++ programmer.
What you will be is a programmer who can use C++- to express solutions to problems and to write programs
that meet real needs.

Why C++? Exactly because C4++ does not get in the way of my showing you how to program. Other
programming languages may be simpler but too often I would find myself frustrated because they would
prevent me from showing you simple answers to programming problems. I have been able to pick and
choose from the richness of C4++ to empower my readers with powerful tools that match powerful ideas.

C++ has one small failing in that the basic language lacks tools for graphical work. That was easily
fixed because I could write those tools in C4++ and make them available to you. I needed some specialist help
with those tools because of the quirkiness of computers: they have different graphical facilities, numbers of
colors on the screen, etc. Using C4+ allowed me to specify what I needed and have a colleague (Garry
Lancaster) turn those specifications into tools that will work on all MS Windows machines. Eventually
(maybe even before you see this book) I will find others who can turn that C++- into identical tools for other
machines but until I do, we have to put up with an artificial limitation in that programs you write using my
tools will only work on machines running some version of MS Windows.

The last element I needed was some simple tools for you to use to write programs and manage the
various technical details of turning what you write into something the computer can use. Those tools were
provided by another writer, Al Stevens, who gave me permission to distribute Quincy, which is his tool set
for newcomers to programming.

The work of people like Garry Lancaster and Al Stevens demonstrates the very best of the computing
community, good work freely shared. The consequence is that you have in your hands everything you need
(other than a computer and your time and energy) to learn to program.

The choice is entirely yours, if you want to learn to program and by doing so learn a bit about how
other people’s computer programs work, you can. Roberta and I have spent nine solid months writing this
book for you (that does not mean it will take you nine months to read it — she had the added burden of
persuading me to improve the text so that others would find it easier). For the first time you have a real
choice about learning to program. We have done our bit, the rest is up to you.

Getting the Best from This Book

Now:-you-have decided-to.buy.this;beok-let me give you some advice on how to get the best use out of it.
Ideally you should not study alone. Note that I wrote “‘ideally’”’, in practice you may find that you have

no choice other than to study by yourself. However, avoid that option if you can. With that in mind the

following is offered as, I hope; helpful advice rather than as some requirement for studying this book.

www.manara

INTRODUCTION

Two things will help you, a partner and a mentor. The partner should be someone of similar ability and
someone with whom you are happy to learn, someone with whom you can share your mistakes as well as
your successes. The process of learning includes making mistakes. Mistakes are nothing to be ashamed of;
they are the way we learn. We should feel comfortable with sharing our mistakes with a partner in learning.
Sometimes we may laugh at our idiocy, and sometimes we may be impressed at the insight of our study
partner. What we should never do is laugh at someone else. The mistake may be cause for laughter but the
person making it deserves respect for letting you learn from their mistakes.

If you do not have someone you know who wants to learn with you, it is worth seeing if you can
contact someone via the Internet. Please check the book’s website where you will find links to potential
sources of study partners. To get to the book’s website use the file on the CD (copied to your hard-drive
when you install it) called “‘Link to Website.html’’. For success, you should be comfortable with your study
partner and broaden the base of the relationship so that you do not just communicate about technical
programming issues. Regular human contact even if only via email is more important to learning than most
people realize. The other person needs to be considered as just that, a person.

I am also providing you with a virtual partner, my assistant author. She is the person who was first to
read every word that is here as well as many that were omitted because she found them unhelpful. Her
comments and experiences with each chapter are included. Sometimes her questions and my answers have
been included as well. At the end of this introduction she will add a short section introducing herself and
from then onwards she will be that vital second set of eyes that every technical writer should have. If this
book is easy to read, you have her to thank. If you still find some of it hard going remember that she has
been there ahead of you making the path a little easier.

The second person to help you, a mentor, should be an expert who can correct you when you stray off
course, encourage you to persevere and compliment you on your successes. A good mentor is an invaluable
resource; a bad one is a disaster.

You will identify the bad ones pretty quickly because they will want to tell you all kinds of things that
are not in the pages of this book. The poor ones will want you to start from where they are or have you learn
the way they did. A mentor who does not give helpful correction and reassurance as to your progress is a
waste of time. One quality of a good mentor is that they are willing to learn from your work as well as to
guide you. In other words they are true experts, always hungry for new ideas, new viewpoints and new
insights. I loved teaching not only for what I could teach my students but also for what they could teach me.

If you cannot find a suitable mentor, try the book’s website again. You can also try doing without
(certainly better than having a poor mentor) and using such resources as model answers (provided in this
book, or on the book’s web pages) or a newsgroup such as alt.comp.long lecrn.c-c++. But be careful because
you will find a great mixture of good and bad in such newsgroups.

Many modern books seem to be written on the basis that the reader needs instant gratification and will
only read the text once. That means that we get solid doorstops in which the new information per page is
very low. Authors try to find a dozen ways of saying the same thing because they expect the reader to only
read a page once. I do not. I expect you to study and that means re-reading as often as is necessary to reach an
understanding of what is going on. Take time over it. It took me nine months to write and it took Roberta
nine months to understand it. Maybe because of the improvements Roberta has helped me make, it will only
take you six months but do not expect to master the contents in much less time. However, you will be
programming long before you finish this book.

I expect you to work at each chapter and return to earlier chapters as your understanding deepens. That
is one of the great strengths of a book as opposed to a training course. The second advantage that a book has
is that you can set your own pace. Some things you will grasp quickly, others will take you more time. The
things that you understand quickly may well be things that someone else struggles with.

I expect you to work through most of this book with your computer in front of you. Just reading will
not.be enough; you will need.to.do.. Lwill assume that you type in the code that I am writing about even
when I do not nag you into it. One thing Roberta says fairly early on is that, with hindsight, she made a
mistake by skipping some of the code when she was working through my text. Believe her, I rarely if ever
waste a student’s‘time with make-work exercises or code that has no value.

www.manara

INTRODUCTION

Someone with some knowledge of programming casually browsing this book could well be very
surprised by some of the material they see in the early chapters. They are used to long, tedious and
repetitious tomes that proceed at a snail’s pace.

I hope that what you will find in this book is something different. This book aims to explain
programming and challenge you to write programs with a limited set of C4+4 tools. As you progress you
will acquire more tools, but the challenge to you to program will be a constant theme.

What You Will Achieve

Everything that you achieve will be built from simple parts (Standard C++ together with my library). I think
you will be surprised how much can be done with simple resources. I certainly find myself playing with
Playpen and hardly a day goes by when I do not think of something else I can do with it. That is a key point;
what you do with your programming is only constrained by your imagination. For example, it is not that
hard to program a computer to play chess, just very hard to write a program to play sensibly, which is why
we leave it to experts to write chess-playing programs.

You will also learn techniques to produce simple animation, elementary data processing and numerical
work so that your programming basics will be fully rounded out. The main theme of this book is to achieve
competence with simple programming and learn that, in essence, it is much simpler than some experts like
to make out. Yes, there are arcane corners, weird traps and bizarre features but you do not need to go near
them to achieve something that you can be proud of.

Programming should be a rewarding experience. If you do not find it so then either it is not your thing
or you have been badly taught. I hope that by studying this book you will discover that you can do it and that
you like doing it.

Notes for Students

Never give up, but learn to ask for help. Have the wisdom to understand the difference between getting help
and being lazy. If you do not understand a problem ask for more information but only just enough to point
you in the right direction.

If you ever get someone else to write a program for you because you are going to miss a deadline, at
least be honest enough with yourself to work at understanding the other person’s work. You will already
have lost a good deal by not doing the work yourself; do not compound that by not understanding what has
been done for you.

Notes for Instructors

This book is based on many years of classroom experience coupled with over thirty years of programming.
Keep focused on what your students require. Impress your students with your qualities as a teacher. That
includes the willingness to listen to your students and a desire to understand what they are asking. They do
not expect you to know all the answers but they do have a right to expect you to be honest. If you do not
know an answer to one of their questions, say so and then take the time to find it.

Please do not destroy the spirit of this book if you use it as a course text. This book is designed to
introduce programming basics as a voyage of discovery. The reader is invited to explore what they can
achieve with the tools they have been shown rather than constantly hunting for more tools.

Understand that it takes skill and insight to do things in a simple way and appreciate the complicated
solutions your students will first offer. But encourage them to look for simpler solutions. It is not enough that
a-program - runs.and-produces.correctsolutions; it should also be a clear expression of the solution to
a problem.

Do not burden your students with unnecessary requirements. Things like comments should be used
constructively/and not as some requirement by which you judge the quality of a student’s work. If you think

www.manara

INTRODUCTION

a student is under-commenting their work, wait a couple of weeks and then ask them to explain the
program. If they can do so, the comments are probably adequate to their needs. The best documentation of
code is the code itself. The more it needs the support of comments the more you should doubt its quality.

Personal Introductions
From the lead author

We are going to be spending many hours together so I should introduce myself. You do not have to read this
but you might enjoy satisfying your curiosity.

I was born in 1942 (3™ June for those who like such trivia) as a first child of six. In 1949 my father
went to work in the Sudan and sent his children to the local mission schools in the belief (correct in my
opinion) that living in a foreign culture was worth much more than any English primary school education.
The school I attended had 2000 pupils, used three teaching languages and there were never more than six
pupils there whose first language was English. I had to learn Arabic and Italian. By the time I was nine I was
preparing to return to an English prep school so I was also learning Latin from a private tutor and French
from my mother who was a fluent French speaker (having been educated in a French convent school).

I started at an English prep school in September 1953 where I added classical Greek to my language
studies. I went to Downside — a leading Catholic public school —in April 1956. In October 1960 I went to
Merton College, Oxford. There I read a degree in Mathematics, and obtained a third class honours degree. As
my tutor said to me several years later, the degree was disappointing but what mattered was that I had got a
lot of other things from Oxford such as representing the University at Judo in the annual match against
Cambridge in 1961, 1962 and 1963. In 1962 I was president of the Oxford University Judo Club.

I went on to teach mathematics in the early years, becoming Head of Mathematics at Cherwell School,
Oxford before taking responsibility for computing in the school. By then I had taught myself to program and
had produced several programs for use by my students. In 1982 I implemented the Forth programming
language to provide portable programming resources for my students so that they could write programs that
ran on their own Sinclair ZX Spectrums as well as the school’s Research Machines 380Z. A colleague of mine
designed and built hardware to link a Spectrum to a 380Z and I designed a protocol to allow the machines to
exchange information over that link.

In 1988 I retired from teaching because the stress of supporting my colleagues with their computing
needs had damaged my health. In that same year I joined the C Users Group UK, which later became ACCU. I
was Chair of that organization for most of the 1990s as well as editor of its principal publication from August
1990 to December 2001.

In 1990 I became involved in the BSI's panels for standardising C and C++-. From there I went on to
represent the UK at the ISO/IEC SC22/WG14 (C) and WG21 (C++4) committees. During the last few years I
have been head of the UK delegation to those workgroups.

If you are interested, I am also an RYA Senior day boat instructor and I play competition Contract
Bridge. I have two children as well as a beautiful disabled granddaughter (born in May 2001).

All T know about you is that you want to try out in my world of programming. Welcome, I hope it
enriches your life because it has done much for mine, not least allowing me to meet many intelligent and
entertaining people. Without those people this book would never have come to be written.

From the student author

I was born, bred and educated in Oxford and I'm still here. I left school at 16, married young, and had a son
and a daughter. During the early years I juggled a wide assortment of part time jobs to fit in with my family
commitments; these included telephone operator, barmaid, playgroup leader and working as a butcher’s
shop assistant in Oxford’s wonderful covered market.

When the children were both settled in school I decided to further my education and went to
Westminster College as a mature student. Initially I intended to take a teaching degree but I changed to
theology. I was'thrilled to get a first class honours degree.

www.manara

INTRODUCTION

After this I joined my husband in his plastic injection moulding factory as a company director and I was
responsible for the administration, sales, quality department and general management. This is where I first
met Francis who was our company’s computer consultant.

When we had built a competent management team I felt that I could return to my studies and I went to
Manchester College and took a diploma in theology mainly to learn the Greek and Hebrew necessary for
more in-depth biblical studies. I spent the next couple of years specialising in John’s Gospel and wrote a
book that I have not attempted to get published.

Over the years Francis has continued to help me with my many computer problems. I am not exactly a
technophobe but I am rather in awe of the dreaded machines. However, I love the Internet and have found it
invaluable for both research and fun. I hope to have my own website eventually and I am slowly designing a
website to publish my book and other pieces of writing.

As a development of my interest in all things spiritual I have recently become interested in more
esoteric subjects including astrology and kabbalah.

My hobbies over the years have been as eclectic as my work experience and have included ballroom
and Latin dancing, archery, gardening, badminton and more recently Tai chi and belly dancing (because now
Iam 50 Iintend to grow old disgracefully) and last but not least having fun with our three grandchildren.

When Francis asked me to be a C++ student I thought he was rather insane. I am scared of computers
and useless at math. However, I am sure that if I can learn to program with Francis’ help then anyone can, so
perhaps I am a good choice after all.

ol L) 3J|_t|5|

www.manara

Acknowledgments

A book is the product of many people in addition to the named authors. An attempt to give an exhaustive list
only leads to a feeling of having been slighted by those who have been left out. However there are always a
number of individuals who have contributed above and beyond the calls of duty and friendship. In that
context I want to publicly acknowledge and thank the following:

Al Stevens (al@alstevens.com) for writing the Quincy IDE and modifying it to better meet my needs
even though this book might be considered to compete for some of the potential readership of his book
(Teach Yourself C++, 7% edition, 0-7645-2 644-8).

Garry Lancaster (gloncaster@codemill.net) for all the many hours he spent implementing Playpen
without ever grumbling that it would have been much easier had I given him a complete spec to start with
instead of coming up with new items as the work progressed. Garry is among the best MS Windows
programmers I know.

Anthony Williams (cnthony_w@onetel.net.uk) who carefully tweaked the installation code for the CD
so that it would make the reader’s life as easy as possible.

I also thank all those on the editorial side, most particularly Gaynor Redvers-Mutton who tolerated my
fiercely individualistic approach to writing a book.

Finally I should acknowledge the tolerance of my wife, Dulcie, and Roberta’s husband, David, without
which this book would never have been finished.

www.manara

www.manara

CHAPTER @

You Can Program

In this chapter I will introduce you to the essential programming tools and show you how to use them to
write your first program. You will find that this chapter is packed with screen images. In so far as is possible
these are exactly what you should see though I cannot promise that future versions of Windows will not
introduce minor variations. I place immense value on ensuring that if you do what I say you will see what

I see.

I will also try to give you a sense of what programming really is and show you that you can already
program though not program computers. By the end of this chapter you should be able to write a very
simple program for yourself that will build more complicated images from an instruction to place a colored
square in a window at a place of your choosing.

What Is Programming?

Many people think that computer programming is an arcane art. In truth it is just another form of something
that most people can already do. When you are asked how to get to the local library, you respond with a
program even though you probably call it ““giving directions”. Your instructions might not work because
you forget a turning, or do not count an alley as a street though the person you give the directions to does.
Computer programmers call that kind of mistake a “‘bug”’.

Knitting and embroidery patterns are programs; indeed they can often be converted into a machine-
readable form by punching the instructions on a card or tape.

A musical score is another form of program with special symbols that have to be placed correctly in
two dimensions. A music program (score) can also be converted to some mechanical or electronic format so
that devices such as modern keyboards can play them automatically (and devices such as piano rolls provided
such automation long before electronic computers were invented).

Computer programming is just another way that an exact set of instructions can be given in order to
achieve an objective. I am sure that you have both followed and provided some form of program at some
stage in your life — it just wasn’t a computer program.

www.manara

Program v programme

Note that the word for a list or details of an event (such as a play, football match, etc.) is spelt
“program” in the USA and “‘programme’’ in the UK (with other English-speaking countries making
their own choice). The term for a set of instructions for a computer is “‘program’’. That is the only
correct spelling in English (though it was not always so).

Almost all forms of programming have special terms and symbols. I sometimes suspect that those that
can “‘program’’ deliberately maintain the mystique of special terms to make themselves seem somehow
special and to make it easy to identify the outsider. But the more likely explanation is that they have simply
forgotten how confusing the terminology can be the first time you hear it.

Before you read any further please take a sheet of paper and write a set of instructions (a program) for
blind guests in your home that will tell them how to get from the dining room to the guest bedroom. (OK, it
can be any two rooms, preferably ones that involve climbing stairs when going from one to the other — you
will find out why the stairs in the next chapter.)

Let me guess that you have been very careful in getting the instructions right. However they are useless
to your blind guests because a blind person will be unable to read them. The program you have written must
be converted into some form that is suitable for the user. Please think about this and we will come back to it
after you have done a small practical exercise. This involves a computer program, a very simple one that I
have written for you but which you have to pass to your computer.

Introduction to Your Programming Tools

You will need a few tools for your work. I have provided them on the CD that comes with this book. Please
resist any temptation to use tools from elsewhere. They will be excellent when you have gained confidence
and fluency with programming. However, their complexity will overwhelm you while you are struggling to
learn to program. It is enough to try to do something new without also trying to do it in an unnecessarily
complicated environment.

You also need something to manage these tools with rather than having to remember every detail for
yourself. Programmers use things called IDEs (Integrated Development Environments), which are rather like
carpenters’ workbenches. Those that come with commercial compilers, or even the free ones that are used by
experienced programmers, have a multitude of options that will simply get in your way and lead to
confusion. (No differences here, then; professional work environments are rarely suited to the newcomer.)
So I have chosen a very simple IDE written and maintained by Al Stevens. He calls it Quincy and it provides
just what we want: enough to work with but no frills to get in the way.

If you have followed the instructions for installing the software you will have installed Quincy
somewhere on your system (perhaps on the C drive, but possibly somewhere else; I have my copy on my E
drive). You should have an icon of a cat’s face on your desktop. Click (or double-click, depending on how
your system is set up) on it to open Quincy. You should see:

www.manara

YOU CAN PROGRAM

There are some things that you need to do every time you prepare to write a new program. I am going
to walk you through them this time with images from my screen to help you. Until you get used to it, come
back to this section each time you start a new program and follow through these steps.

1) Create a new project

Left click on the File menu and then the New option:

Select “‘Project”” by double-clicking on it (or click and select ““OK™").

Type “‘my_first_program’ (get into the habit of giving descriptive names to projects and other files) in
the Target name box. Use the browse button to find the sub-directory named “Chapter 1. You should find
that in the directory called “‘tutoricl” on the drive where you installed the tools from the CD. When you have
found it, left click the OK button in the browse dialog box. Check that the “Type of Build™ selected is
“‘Console application”.

www.manara

The dialog box should look like this:

Left click on the OK button and you should see:

2) Set the project options

Select the “‘tools” menu and choose options. You should see the image at the top of the next page.

e that the esshavebeensselected as in this image. Then use the browse button beside the Includes
eaders’’. That should be one of the other sub-directories in the
ick OK in the browse dialog and then click OK in the Options

www.manara

YOU CAN PROGRAM

—
=]
o [EATOTORIALGUINGY 2002 mingss HE

L tep _

3) Get the special libraries

Much of the programming you will be doing relies on two special files. Do not worry about exactly
what they are; they contain resources that one of the programming tools will need. You have to find these
two files and include them in the project.

Click on the Project menu and select “‘Insert Files””. You should then use the drop down menu in the
dialog box to find the fgw_headers sub-directory. You should then see something like this (the exact file list
may be different, but the two important files fgwlib.a and libgdi32.a should be there. (If they are not in the
sub-directory, your installation from the CD is faulty. Copy the contents of the fgw_headers directory on the
CD to tutorial\fgw_headers.)

Froject Fles [.c:".cpoc.al

Now you need to be careful because you need to
get the files fgwlib.a and libgdi32.a into the project in the
correct order. Hold down the Ctrl key on your keyboard 'ﬂ R
and first click with the left mouse button on libgdi32.a s
and then on fgwlib.a (the selection will list them in the
reverse order when you have done that) and click on the
“Open”” button. Quincy may ask you if you wish to copy
the files to the project directory: click on yes. If it asks
you about replacing an existing copy, accept that as well.

If you have done everything correctly you should be
looking at the image on the right.

www.manara

our First Program

Let us write a program together. First go to the File menu and select New. (I won't keep telling you to use
your mouse to make these choices.) Four kinds of new things will be visible (there are three other file types
if you scroll down, but the only ones we will use are three of the top four and, later, the ASCII Text file type).
Choose C++ Source File.

Creating the source code

Type the following into the editing window:

// first program typed in by
// on

#include "playpen.h"
#include <iostream>

int main(QQ{
fgw: :playpen paper;
paper.display(Q);
std::cout << "press RETURN to end program.";
std::cin.get();

Add your name at the end of the first line and today’s date at the end of the second, otherwise type in
the above text exactly (you do not need to worry about extra spaces). We will shortly look at what each line
of the above is doing but, for now, focus on getting this program working.

saving the source code

When you have finished typing you must save your work. Go to the File menu and select Save. STOP! Check
where you are about to save your work and by what name. Unfortunately sometimes the defaults will be
wrong. Use the controls on the Save dialog box to find the sub-directory called Chapter 1. Now change the
File name entry to Empty_Playpen (because that is what this code produces) and click on Save.

When you do this some of the words above will change color. Do not worry: Quincy uses color-coded
syntax, which means that Quincy uses color to help you distinguish such things as comments and the basic
words of C++ from the rest of the program. If you do not like the chosen colors you can change them by
using the “‘editor’ tag in the Tools\Options window.

How easy the next part is will depend on how meticulous you have been with my instructions. If you
have done exactly what I asked you to do then the next step will be easy. However if you have mistyped
anything you are going to get error messages, and some of those can be pretty obscure.

Compiling the source code

Press F5. You will see a small window open with a long one-line message in it. Do not worry; Quincy is just
reporting what it is doing. In this case it is using a tool called a compiler to convert your program into
something that can be used with pieces from the libraries to make an executable (a program that can be run
all by itself).

After-a-short time (how:short.depends on the speed of your computer, but it is six seconds on mine)
you should see a second message Successful build. If you are unlucky you will see several more lines of messages
followed by Unsuccessful build. At this stage all that those extra messages mean is that you mistyped something.
Go back and look through your source code (that is what programmers call text that is going to become part

www.manara

of a program) and see if you can spot where it is different from the version I provided above. Make your
corrections and try again.

What you have done so far is to use a simple text editor to create some source code. You saved the
result in a file called Empty_Playpen.cpp (Quincy supplied the .cpp for you) and then you converted it into
a form that the computer can use to create a program. That last stage happened when you pressed F5: a tool
called a compiler converted the source code into something called object code. The process is like taking
your instructions for a blind visitor and converting them into Braille. The object code would be pretty arcane
if you tried to read it but it is just what is needed for the next stage.

Creating programs

You might be wondering why I did not make life easy for you by placing the source code on the CD. I
would not be so cruel as to destroy such an important opportunity for learning. You need to start
experiencing typical errors as soon as possible so that you will learn what they are whilst your code is
still only a few lines long. This is like the falls that a young child experiences while it learns to stand up
and then to walk. Mistakes are opportunities to learn.

Programming is largely a skill. That means that you need regular practice, and that includes
practice at handling mistakes. Try making a couple of simple alterations to my source code (such as
omitting a semicolon or misspelling playpen) so that you can see the resulting error messages when
you compile it by pressing F5. Do not try to understand them in detail but try to get a feel for them and
what causes them. Note that double-clicking on an error message will often locate the place that the
compiler is complaining about. However the actual error might be in an earlier line of source code. All
the compiler can do is tell you where it first detects that it has a problem with your source code.

Including the program in a project

Now go back to your project window (re-open my_first_program.prj, if you closed it) and use the Project
menu to insert your empty_playpen.cpp source code file into the project. You do this in the same way that
you added the two library files earlier but this time the file should be in the “‘Chapter 1" directory. At this
stage your screen should look something like that on the right here.

The list of files can be in any order with the single
exception that fgwlib.a must come before libgdi32.a.
This limitation to the order in which files are placed in a
project is very unusual and is the result of some of the
things I had to do to allow support for a simple program
style suitable for those learning to program while using a
modern Windows style operating system.

BB my_first_program [my_first_program. exe]

emply_plavpen, cpp

Creating and running an executable

Now Press F9. You will get a message saying that my_first_program does not exist. Click the Yes button and
Quincy will create the program for you and run it. This program will hardly take a prize for originality but it
has a special place in your life because it will be the first C++ program you have created by typing in some
source code, compiling, linking (the process of creating a program from object code and other resources
such-as-the fgwlib.ar-and-libgdi32:.cthat-have been provided) and running it. You will see two windows: one
is a standard console type window (like the ones you get when you run MS-DOS programs from Windows);
the other is a large empty white square [with a border and a banner naming it “‘Playpen’’. Here is what your
screen might look like:

www.manara

18 Duincy 2002 - my_livst_progsam PR [mp_fisl_proguam exe]
e Edi View Froject Debug Took |

DERE sk 0L ol FD@LaB és|>&

oW Hel

‘e my_fist_progiam

A ke ckine Aenandanries

The white square window with “‘Playpen’ in the window’s banner is where we can display graphical
material. Underneath it is a black console window that will have the name of the program in its banner. In
this case it is my_first_program. The graphics window is unusual because it is a static window, which means
that you cannot resize it (and on some versions of Windows you cannot move it either). The console
window is a normal MS-DOS type window: it can be moved and resized, but you should not try to close it
unless you are left no options (i.e. your program has locked up and will not end normally).

If you look at the task bar (normally at the bottom of your screen) you will find that each window has
its own task button. The easiest way to switch between the windows is to click with your mouse on the one
you want. Experiment a little to get the feel of working with the two windows.

Use your mouse to bring the console window to the top. You will see the message “‘Press RETURN to
end program’’. Do so and the program ends.

Well, not quite. After the program ends and the Playpen window closes, Quincy wakes up and keeps
the console window open until you press return again. Quincy is trying to be helpful and possibly succeeds in
being confusing. We should not blame it because Playpen is very unusual and was specially designed to help
people learn to program. I cannot remember having seen anything that works quite like it anywhere else.

Congratulations, take a break and then I will walk you through the source code and explain a little
about what it does.

Walking through the Empty Playpen code

Those first two lines, which start with ““//”", are comment lines. Whenever we want to write something in
C++ source code that is intended purely for human readers, we write it as a comment. Comments start with
// and continue to the end of the line they are on. Some authors, instructors, etc., seem to think that source
code should-have lots.of comments-Nothing could be further from the truth. Comments should only be used
when they add information that cannot be provided by the source code. Choosing good names and
programming structures removes the need for many comments, just as writing good text reduces the need
for footnotes in a book.

www.manara

All source code files should have comments to identify the author and the date of creation. They should
also include the date of the last modification if this is different from the creation date. If you are working by
yourself that might seem unnecessary, but it is a good habit to get into. If you are responsible for a file of
source code, put comments with your name and the date at the top (or if you prefer, at the bottom) of
the file.

It is easy to underrate the value of making sure that a file contains its last modification date and its
author’s name. It is all too easy to finish up with identically named files in different places on your computer
and not be able to determine which is the most recent version. Some programs such as Microsoft Word track
the date of the last change as part of the information it stores when you save a file. Professional programmers
use a tool called a version control system that requires files to be checked out and checked back in. For now
you should try to ensure that your source code files contain their creation date and last modification date.

The next two lines of our program are instructions to the compiler to tell it that it will need to look up
information somewhere else. We call these other places “‘header files’’ (I guess because they come at the
head of a file of source code). Header files generally have a h extension, except the ones that belong to
Standard C++ which have no extension (and are usually just called headers). A second difference is that the
names of the Standard C++ headers are placed in angle brackets and the names of the others are placed in
quotes. That matters: if you get it wrong, the compiler may not be able to find the right files.

There is also a small issue of good style. Place the ordinary header files first, in alphabetical order. Place
the Standard C++ headers afterwards, again in alphabetical order. The compiler will not care about this but
other human readers may.

The contents of the header files and headers will be copied into your file on a temporary basis (we call
this pre-processing). If you look at the contents of a header file (you can find the ones for my library in the
fgw_headers directory), they might look pretty strange. There is nothing mysterious about them; they are
like tables of contents for a book except that a header file documents what can be found in a corresponding
C++ library or source code file. C4+- library files (such as libgdi32.a, which provides graphics support for
Microsoft Windows, and fgwlib.a, which contains the special support material I have written for this book)
have a .a extension in this IDE; C++ source code files use a .cpp extension by convention. The compiler (the
tool that translates source code to object code) needs to know what the linker (the tool that links, or joins
together, your code with other code to make a complete program or executable) can expect to find in other
object code files and libraries. Header files give the compiler this essential information.

In this case the playpen.h header file provides the information the compiler needs to know about what
it can find in the fgwlib.a library. That includes everything that comes as part of the Playpen facility (more
later). The second header file, iostream (notice the use of angle brackets) is a C++ Standard Library header
that provides information about basic input and output facilities provided by the C++ Standard Library.

C++ provides a sophisticated mechanism naming things. It is among the most sophisticated that I have
come across. It allows programmers to provide information about where names are declared and the context
that adds to their meaning. This should not be a strange idea because we use something like it in everyday
conversation. When you hear an art teacher talk about drawing a gun you do not expect that to be followed by
firing it. However if you hear a police officer use the same phrase, you would be surprised if he then went on
to describe the use of charcoal for the purpose.

At this early stage in your programming I do not want to have to explain the mechanisms for providing
short names in context so I have provided the full names for the things I am using from the C++ Standard
Library (those that start with std::) and my library (those that start with fgw::). Names are important in
programming and I will have a lot more to say about them as we progress.

Mostly, programmers do not worry about the contents of header files, they just include them where
needed. Sometimes they will look in a header file to make sure they know how the names being provided
have been spelt and the details they need for correct use.

The next line, which starts “int main(”, is special. It tells the compiler where your program will start.
Every-program-nieeds.exactly-oneline thatstarts ““int main(’’. In this case our program does not need any
data from outside when it runs so the line is in the simplest form: “int main(Q{".

The next line is called a declaration and definition. The declaration part is because it tells the compiler
about a new name (paper) and what type of thing it will refer to (fgw: :playpen, i.e. a playpen type of

www.manara

thing from the fgw library). The definition part is because writing that statement in this context will result in
creating (the C++- term is “‘constructing’”) the fgw: : playpen object that we will refer to by the name paper.

We will deal with objects and types quite a bit. In many programming languages the idea of type is an
essential component of the language. In general, a type is a combination of storage for information together
with a specification of how that information may be used or altered. That will seem a bit vague at the
moment but as we progress I hope that the concept will become clearer.

All objects of the same type behave the same way though they may be different in some details. Just as
when we say that Fido is a dog, we know that we mean that “‘Fido’ is a particular dog, the compiler knows
that paper is a particular instance of the type (breed) called playpen.

The next line “paper.display();’ is the way that we tell the object named paper to exercise the
display behavior of a playpen. (Rather like saying “‘Fido, beg’’.) That causes many things to happen behind
the scenes but the result is that a white playpen window is displayed on your screen.

The next two lines are there because without them the program would end and close the Playpen
window belonging to paper before we have time to realize that anything has happened. Take a moment to
try that, by adding // at the start of each of those last two lines. (This technique is called ‘‘commenting out”
and is used when you want to suppress a line temporarily.) Recompile (F5) and relink and run the program
(F9) to help you appreciate the need to know how to pause a program.

As you might guess, std::cout << "Press RETURN to end program"; causes the message to be
displayed in the console window and the next line waits for you to press the Return (or Enter) key.

std: :cout and std: :cin are the names of two more program objects, this time provided by the C++
Standard Library. std: : cout represents the console output in your program, so that when we want to do
something to our console output window we send it to std: :cout. << is an operator that is used in this
context to send information (“‘Press RETURN to end program’) to the screen. std: :cin represents the
console input; in our case, that is the keyboard. So std: : cin is the name of the object that provides a
mechanism by which we can obtain information that has been typed in. .get() results in the program
extracting one key press from the keyboard.

However the keyboard does not normally hand over anything (including the code for Return) to a
program until you have pressed Return (or Enter). You could type in a whole lot of things and the program
will see none of them till you press the Return (or Enter) key (from now on I will just call it the Return key).

Elements of C++ Programs

A few other details before we take a break for more experimenting. Programs are mainly made up of
statements (the equivalent of sentences). Simple statements end with a semicolon. There are several other
kinds of statement; we will come across them later.

Statements are often organized into blocks (equivalent to paragraphs, except that they can be nested
inside each other). A block starts with { (read as “‘open brace’’) and ends with } (close brace).

C++ programs are composed of words and symbols. Most of the words are of one of four kinds. There
are keywords, about six dozen of them (see Appendix B on the CD for a complete list of operators and
keywords), which are the basic words built into the language. In the default setting Quincy identifies these
for you by displaying them in blue. We have several dozen operators (things like + and —) most of which are
represented by symbols or sometimes two symbols together (such as << in the source code above) rather
than letters and numbers though a few operators are spelt out. Next we have literals. These are mostly
ordinary numbers such as 3 or 2.4 or —8. We also have character literals which are placed in single quotes
such as 'a' and string literals which are placed in double quotes such as "Press RETURN to end program"
in the above source code. Lastly we have names that are used to identify programming entities. Mix up and
spice with a little punctuation and we have the bulk of the C++ language.

Names-are-important-because they-are the things that programmers create to help express their
intentions. Names are made using 63 symbols (26 lowercase letters, 26 uppercase letters, the ten digits and
the underscore (*“_"")). A name cannot start with a digit. That is an absolute rule. The other rules are subject
to exceptions:

www.manara

e Do not use two or more consecutive underscores (which has special significance).
e Do not start a name with an underscore (which also has special significance).
e Ensure the names you invent have at least one lowercase letter unless they are for the pre-processor.

e Ensure that names for the pre-processor do not include lowercase letters.

At this stage those rules will not mean very much. Do not worry; stick to the simple positive rule that
names should make sense. If you need to add a comment to explain why you chose a name then it was
probably a poor choice.

There is a second important aspect of names, which is when a particular name refers to a particular
entity. It is too early to cover this in detail but you need to know that a name (like paper in the source code
earlier in this chapter) that is declared within a particular block (remember that a block is a set of statements
enclosed within braces) only has that meaning within that block. Because names have strictly limited locality,
we do not have to spend time checking if some other part of a program uses a name we want to use. If it is a
different place, then it refers to a different entity.

Do not try to understand this completely; as you progress you will be able to flesh out your
understanding of the way names work in C++-. Keep in mind that, just as you probably have several names,
nicknames, etc., each of which is recognized in a particular context, entities in C++ can have several names
each used in its own context. And just as other people can share your name, a name in C4+ can refer to
different entities in different contexts. There are various ways of selecting which entity a name refers to if
there is any ambiguity.

Enough theory for now; time to do some more programming.

A Playpen Doesn’t Have To Be White

We are not restricted to using white squares. At any one time we have a palette of 256 colors available. I
know that your machine can probably put millions of colors on the screen at once but 256 are more than
enough for our purposes and using more will just get in the way. If you have your computer set up to
display in high color or better and you are using only 256 screen colors, Playpen may affect the rest of the
screen, but not permanently (and it doesn’t on my hardware).

During the course of study we will want to handle red, green and blue elements of color separately (if
you are more used to mixing paint you need to know monitor screens work by mixing light; the rules are
different for light, giving priority to those three colors). In order to make this relatively easy, the
fgw: :playpen type has a carefully tuned palette option, which it uses by default (i.e. you get it when the
first fgw: :playpen object is created in your program).

There are the two extremes, black and white. Then you can create colors by mixing three shades of
pure red, two shades of pure green, two shades of pure green and turquoise that doubles up as both a shade
of green and a shade of blue.

I have provided a special type called fgw: :hue to handle the palette. The numbers 0—255 identify the
256 palette codes (note that programmers usually count from zero, we will have more about that in the next
chapter). I have provided names for the pure colors provided by the default palette together with special
versions of 4+ and — to allow you to mix those colors. The names are redl, red2, red4, greenl, green2,
greend4, bluel, blue2, blue4 and turquoise. greenl, bluel and turquoise are synonyms.

Those names have been chosen to provide a logical relationship between shades of the same color.
redl + red2 will give a shade that is between red2 and red4. However be careful because fgw: :hue uses its
own rules for addition and subtraction. These mean that, for example, redl + redl = redl (adding a color
to itself results in the same color, which is what you would expect if you think of adding as representing the
process.of mixing; mixing something with-itself results in what you already had).

In theory (if we had the intensities exactly balanced) red4 + green4 would give you a medium
yellow. The brightest red available is given by red4 + red2 + redl and so on. Addition is straightforward
and on most screens will be close to what physics knowledge would predict.

www.manara

Subtraction might give you some surprises. If you try to subtract a color, it will remove elements that
are shared. So if we have shadel = red4 + redl + green2 + blue4, and shade2 = red4 + red2 +
greend, then shadel - shade2 results in (redl + green2 + blue4). In other words subtraction is done on
each of the eight primary shades separately and you cannot take away what is not there. I hope that does not
confuse you too much. It actually has little to do with programming as such but relates to a common
mechanism for encoding things like colors.

You only need a couple of other tools to start experimenting. The first is that you can change the color
of your Playpen window (I will just call it a Playpen in future when I want to refer to the window on the
screen, and use playpen when I want to talk about the source code side) by using the clear() function. You
can write:

paper.clear();

That changes the Playpen to all white. Well at the moment that is not exactly useful because it is already
white. You can place any one of the primary shades (redl, red2, etc.) or the result of adding together
primary shades in the parentheses following clear. Writing paper.clear(red4 + blue4); will resultin a
magenta window. If you want to be obscure you can use the numerical codes directly by using any number
between 0 and 255 inclusive. So you could write paper.clear(243); which gives a nice warm pink on
my monitor.

You can also create a colored Playpen by adding a color code in parentheses after the name when you
declare it. A little experimenting will make that a lot clearer.

Try modifying your program so that it looks like this:

// experimental program 1 by
// on

#include "playpen.h"
#include <iostream>

int main(){
fgw: :playpen paper(fgw::blue2 + fgw::green4);
paper.display(Q);
std::cout << "press RETURN to clear the screen";
std::cin.get();
paper.clear(fgw::red4 + fgw::greend4 + fgw::blued);
paper.display();
std::cout << "press RETURN";
std::cin.get();

Now compile it (F5) and when it compiles successfully, run it by pressing F9. Try different color mixes
and numerical codes to see how you have a variety of different colors to use. Much later we will find that we
can change the way the numerical values map to colors.

When you start experimenting with an existing program by changing the source code you will almost
certainly make the same mistake that I do. I run a version and then I am so keen to make a change and test it
that I forget to end the previous run (the program is still on the task bar). When I do that I get a bundle of
error messages. Effectively they are telling me that I cannot build a new version while an old one is still
active. I just go back to the console window for the running version and finish the program. Now I return to
Quiney-and-press-F-again-Everythingshould now be fine, barring any typos.

Did you get irritated by having to type in all those fgw: : prefixes to names from my library? Well, even
if you did not, I'did. We can avoid the need to add those prefixes by telling the compiler that we are using a
particular namespace (the context of a library). The required program statement is:

www.manara

using namespace fgw;
for my library and:

using namespace std;

for the C4++ Standard Library.

You need to be careful that you only write those statements in your own source code files and never
place them in header files which will be shared by other people (or even yourself). I will use this technique
in the rest of the source code that I provide but use the full name when I need to identify which library a
name belongs to.

You already use names like this. My friends call me “‘Francis’” and only add “‘Glassborow’’ when they
need to distinguish me from some other Francis. C4++ names work almost exactly the same way.

Plotting a Point

Just being able to change the color of a large square window is not going to get us very far so next I will
show you how to plot a point. By default the Playpen behaves like a sheet of graph paper with the origin in
the center. Do not worry if you have forgotten those math lessons about plotting points because the program
will do most of the work. There are lots of colors available but let me stick with black and white for now. If
you feel adventurous you can replace my black and white with color mixtures or numbers (I will call those
palette codes from now on).

Create a new project, like the one you did before but call this one first_plot. Just a quick reminder as to
how to do this:

1) Open Quincy.

2) Go to the File menu and select New.

3) Select Project.

4) Make sure that you are going to put it into the Chaypter 1 directory.
5) Change the name from the one Quincy guessed to first_plot.

6) Set the options as we did above.

7) Now insert the two library files (libgdi32.a and fgwlib.a) making sure they are in the right order in the
list: fgwlib.a first then libgdi32.a.

8) Save the project file.

Next start a new source code file. Call it plot. Now copy in the following source code and compile it
(F5). When it compiles successfully add this file to the project and press F9. You should get a white playpen
with a tiny black dot in the middle. Yes, it really is tiny, small enough so that 512 of them would fit side by
side across the Playpen.

// point plotting program
// on

#include "playpen.h"
#include <iostream>

using namespace fgw;
using namespace std;

www.manara

int mainQ{
playpen paper(white);
paper.plot(0, 0, black);
paper.display(Q;
cout << "press RETURN";
cin.get(Q);

Notice how those two using statements (correctly called “‘using directives’”) simplify what we have to
write subsequently. You may wonder why we provide the prefixes if we then promptly remove them. The
answer is that, just like our family names, they are there when we want or need to be more specific.

Wouldn’t it be nice if we could make that black point bigger? Well you could patiently add the
following lines immediately after paper.plot(0, 0, black);

paper.plot(0, 1, black);
paper.plot(l, 0, black);
paper.plot(l, 1, black);

If you are anything like me you would prefer not to do all that work, even if most of it is done by cut
and paste. If you want to make the point four times wider and higher you would have to plot 16 points. That
seems excessive. There is a better way; you can change the scale of the display with the following statement:

paper.scale(2);

You can use any number from 1 to 64 as the scale. If you try numbers outside that range they will be
ignored. Changing the scale changes both the size and the position at which a point is plotted. So when you
use a scale of 2, the pixel is twice as high, twice as wide and twice as far from the origin compared to using a
scale of 1.

Instead of plotting black points you can choose any palette code from 0 to 255. By convention 0 is
black and 255 is white.

Create a new project for the following small program. Please do not skimp by reusing the one you
have. You need to become fluent in starting a project so that the process becomes second nature, including
checking that you save files where they belong.

// point plotting & scaling program
// on

#include "playpen.h"

#include <iostream>

using namespace fgw;
using namespace std;

int mainQ{
playpen paper(white);
paper.scale(8);
pape 0

www.manara

cout << "press RETURN to end";
cin.get(Q);
}

Please remember to get the source code to compile by using F5 before you add the file to the project.
This is just a good habit and helps you focus on one thing at a time. Once it is in the project you can still edit
the source code, but you know that it has compiled successfully. If it stops doing so you know that it is
something you just did that caused the problem.

Now experiment with this program (remember the warning I gave earlier when experimenting; make
sure you finish a run of a program before you try to build — F9 — a new version). Use some different scales,
some different palette codes or color mixes and some different coordinates for the points instead of the 0, 0
that we have been using.

You should notice that when you plot at other places the two plots may no longer overlap. Actually you
will not even see the second one if you continue to use white for it because you will be plotting a white pixel
on a white background.

Mixing Colors

The designer of the playpen type arranged that when points are plotted their color “mixes’ with the
existing color in one of four ways. These are called plot modes. The plot modes are:

e direct: the new color replaces the old.

e additive: the new color mixes with the existing one. For example, if you plot a bright green point on a
red screen in this plot mode you will get yellow (it might be greenish or reddish but basically it is
yellow). Did you forget that we are mixing colored light not paint?

e filter: if you use this mode you will get something equivalent to using color filters. If you put a red
filter in front of a mixture of colored light only the red part gets through. In effect you will only see the
color produced by the primary elements that are found in both the current color and in the new one.

e disjoint: this one may seem strange to you, but it is probably the most useful mode after direct. It
combines two color values to make a new value by removing any shared primary elements. For example,
if the screen color is (red2 + blue4 + green2) and you plot a point that is (red2 + blue2 + green2)
the result will be bright blue (bTue4 + blue2) because red2 and green2 appear in both the screen and
the plot colors and so cancel out. Unlike in the other three plot modes, plotting the same point with the
same palette code a second time makes a difference in the disjoint plot mode. It undoes the effect of the
first plot. In the other plotting modes, repeating a plot makes no further difference.

Modern Art?

I will not insult talented artists by suggesting that the following program does anything resembling real art.
However if you have an artistic streak in you, you might be able to produce something with merit by
exploring the potential that you already have.

Here is my program:

// point pseudo modern art by Francis Glassborow
// coded on 23 November 2002

#include "playpen.h"

#include <iostream>

using namespace fgw;

www.manara

using namespace std;

int mainQ{
playpen paper;
paper.clear(224);
paper.scale(32);
paper.plot(0, 0, 19);
paper.setplotmode(disjoint);
paper.scale(24);
paper.plot(1l, 1, 28);
paper.scale(64);
paper.setplotmode(additive);
paper.plot(3, -2, 113);
paper.plot(0, 0, 37);
paper.plot(-2, 0, 49);
paper.setplotmode(direct);
paper.plot(-3, 3, 187);
paper.setplotmode(disjoint);
paper.scale(23);
paper.plot(-6, 8, 231);
paper.display(Q);
cout << "press RETURN";
cin.get();

I have deliberately used palette codes in the above program so you can see how such numbers result in
obscure source code. Can you tell me what color the background will be? Now had I written
paper.clear(red4 + red2 + redl) you would know that it was going to be bright red. Programmers
refer to numbers used like that in derogatory terms, as “‘magic numbers’’. I introduced those eight primary
color elements exactly so I could avoid magic numbers. I hope that makes sense to you now.

You do not have to type in my program but you might like to use it as a starting point for your own
version. Have fun and if you send in your effort I will place it on the book’s website so that others can
admire your work.

Tasks, Exercises and Fun

Each chapter includes one or more “‘task’ sections where you are given a programming problem. The
problem can always be solved with no more than you have learnt from studying this book. Do not go and get
answers from elsewhere because they almost certainly will use features that you have not yet studied.

Please do not cheat yourself by skipping these tasks. I have never believed in setting repetitive ‘‘make
work’ tasks, so everything I ask you to do has been chosen with a purpose.

I will sometimes provide the solution that my student partner produced and her comments on both the
exercise and the difficulties she had with it. Often you will also find my solution. The purpose of my solution
is not to pour scorn on yours but to set an example of what good code looks like. Remember that I have
spent many years programming so my code should be better than yours. If you think it isn’t better or if you
are puzzled by any solution of mine, first check the book’s website and then, if necessary, email me
(assuming thatyousdo.nothaveaamentorwho can answer your question).

I expect you to work through material that is presented in the main text and try all the items labeled as
tasks. If you are unable to complete a task you should try to find someone who can help you understand
whatever it is that is causing a problem.

www.manara

YOU CAN PROGRAM

There are also exercises in many chapters. These are provided to give you something to practice with.
Programming is a skill and needs regular practice. It is not essential that you complete all the exercises but I
think you will become a better programmer if you attempt most of them. You should check my solutions
when I provide them because these often include further points that will help you become a better
programmer.

Then there are suggestions of things that you can do which should be fun as well as contributing to
your programming skills. In this chapter you can spend time experimenting with the various aspects of color,
scale and plotting modes. Not only should that help with your programming but it will also give you a better
grasp of the fundamentals of using color on a computer screen.

Write a program that places a black cross at the center of a white Playpen. All the other
details are up to you. Please do not start Chapter 2 till you have succeeded in this task.

www.manara

ENDNOTES

ROBERTA’'S COMMENTS

When I read through Chapter 1, I was quite excited by the prospect of creating a work of art so early in my programming
career. So I wanted to rush through and get to the fun bit.

Unfortunately I got stuck. I had problems with plotting a point. It refused to build (compile) and the error message
said that paper was undeclared. I was convinced that I had typed it in correctly. In desperation, I phoned Francis and felt very
stupid when I discovered that I had indeed left out the dot between “paper” and “display()” in paper.display(). By
the time I got to the fun bit I was quite used to error messages. My most common mistake was typing a comma instead of

a point.

I typed in Francis’ program to begin with to see what he had produced — artistically speaking I thought just maybe I
could do better. It’s rather amazing what you can achieve with such a simple thing as plotting a point. After a while I felt quite
familiar with Quincy and Playpen. However, I couldn’t understand how the colors worked.

After dll the fun of producing a masterpiece I thought the idea of producing a black cross on white paper was rather
boring. I didn’t have any problems producing a cross but was frustrated by the fact I had to plot each individual point to produce
a line. I was certain there must be a simpler way to do it.

summary
Key programming concepts

»

»

A program is written in a programming language such as C++. The human readable form is called
source code.

We use a simple editor to write source code. Program editors are specialized to help produce source
code. Modern program editors use color and layout to help programmers see the structure of the
source code.

Source code is converted into a form called object code by a tool called a compiler. A compiler will
provide us with error messages if it cannot translate our source code. It may also issue warnings if it
is suspicious of our source code even though it can be converted to object code.

A tool called a linker combines object code from one or more source code files. It then searches for
any missing pieces by looking in special files called libraries that contain collections of object code
for common activities. If it finds all the required pieces it creates an executable program.

There are other programming tools, such as a debugger (which helps to find errors in programs), that
are designed to support us when we are programming.

We generally use an Integrated Development Environment (IDE) to help organize the tools we are
using and to provide communication between the tools.

C++ checklist

»

Every C++ program must have a single block of source code that is used as the starting point. The
name of this block is main. Though there are several variations, we will be using the form:

int mainQ{
// insert program source code

3

A C++ compiler also needs to know the names and some details of things that will be provided
elsewhere. This information is provided by special files called header files.
The compiler is instructed to access a header file by lines that start #incTude.

www.manara

» ostream is the header that provides C++ names of input and output facilities.

» C++ provides a facility so that we can add comments to our code. Comments are for human readers
and will be ignored by the compiler. A comment starts with // and continues to the end of the line.
All files should, at a minimum, include comments naming the writer and date of writing. Other
comments should be added as necessary to help other people understand the source code.

» C++ programs use objects and variables that have a type. Knowing something’s type tells you what
you can do with it. Types are named and the only named type you have used so far is
fgw: :playpen.

» The principle ingredients of a C++ program are the keywords, operators, names (those provided by
C++ such as std: : cout and std: : cin; those provided by third parties such as fgw: :playpen
and display(); and those provided by you as a programmer such as paper) and literals
(sometimes called values) such as 2, 3.5, ‘a’ and ““Press RETURN". There is a small but essential
amount of punctuation of which the semicolon is the most obvious.

» We use the ingredients of C++ to write statements that are often grouped into blocks that are
marked out with braces.

» Objects generally have behaviors. We can ask an object to do something by appending a period
followed by the behavior name followed by any necessary data in parentheses. The parentheses are
required even if empty.

» std::cout is a Standard C++ object that, for now, represents the screen. Messages may be sent
to std: : cout with the << operator.

» std::cinis a Standard C++ object for the standard input (by default, the keyboard).
std::cin.get() extracts a single symbol (letter, digit, symbol, etc.).

» Programs are broken into blocks by using (curly) braces. Names declared inside a block are only
significant in that block.

» C++ provides a mechanism for placing library names in context. This mechanism is called
a namespace.

» This book uses two primary namespaces: std for the C++ Standard Library names and fgw for
my library.

C++ provides a mechanism to allow programmers to use library names without
providing the namespace prefix. For example, the following directive allows use of names from
the C++- Standard Library without the std: : prefix:

using namespace std;

Extensions checklist

In this book you will be using a set of extensions, written by the author with the help of others,
to write programs that produce graphical results in addition to the pure textual and numerical
results for which Standard C4+ provides the tools.

» fgw::playpen is a type that provides the principal graphics resource. This graphics resource is not
part of the Standard C++ language but is written in Standard C++ in so far as that is possible. Deep
under the hood it has to use system-specific features, so you can only use it on systems where it has
been implemented. At present that means that you can only use it on a computer using Microsoft
Windows (95, 98, ME, XP, NT4 or 2000).

» We create (construct) an fgw: : playpen object by declaring a name for it (paper in the code in this
chapter). Note that fgw: : playpen is the name of the type, while paper is the name used to refer
to a specific Playpen object. (Just as ““dog” is the name of a type of animal whereas "“Fido’" might be
the name of a specific dog.)

www.manara

ENDNOTES

»

»

We can choose a background color by placing a number from 0 to 255 or a color mix in parentheses
after the name used in the declaration.
The following is a list of the nhamed palette codes:

white : 255

red4 ;128 red2 : 64 redl 1 32
green4 : 16 green2 : 8 greenl : 1
blue4 : 4 blue2 : 2 bluel : 1
black : 0 turquoise : 1

The eight primary palette codes (red4, red2, redl, green4, green2, blue4, blue2, turquoise)
encode an 8-bit binary number. red4 is the high bit (128) and turquoise is the low bit (1).

If you do not understand this point, do not worry. However, if you know about binary numbers, the
additive, filter and disjoint modes work by using the binary representation of the palette
codes. If you write two palette codes as binary numbers and then compare them place-by-place the
result is generated by the rules given by the following table:

additive filter disjoint
0+0 0 0 0
041 1 0 1
140 1 0 1
141 1 1 0

So given palette codes of 134 (10000110 or red4 + blue4 + blue2)and 69 (01000101 or red2 +
blue4 + turquoise), we get 199 (11000111, red4 + red2 + blue4 + blue2 +
turquoise) in additive mode, 4 (00000100, bTue4) in filter mode and 195 (11000011, red4 +
red2 + blue2 + turquoise)indisjoint mode.

Do not worry if binary math is a mystery; just enjoy the results. The computer will do the work
as long as you tell it which plot mode to use. We do this with the setpTotmode () member function
of fgw: :playpen.

The possible things that we can ask a fgw: : playpen object to do or tell us are provided by its
member functions:

clear(n) clears the Playpen window to the specified color (nis a
palette code from 0 to 255).

setplotmode (pm) determines the way that the palette code of a new plot
mixes with the existing one (pm is one of direct,
additive, filter and disjoint).

plot(m, n, h) plots a point (m and n are the coordinates of a point to be
plotted and h is the palette code to be mixed with the
current shade).

scale(n) determines the width and height of a single point in pixels
to be plotted (n is a number from 1 to 64).

display() causes the results of your instructions to the

fgw: :playpen object to appear on the
Playpen window.

www.manara

CHAPTER @

You Can Loop

One of the most fundamental guidelines for good programming is to avoid writing something more than
once. Programming languages provide a variety of mechanisms to help you to avoid repeating code. The

most basic of these is the concept of looping. In this chapter, I will introduce you to one of the ways that
C++ supports looping.

Drawing a Cross

When you did Task 1 at the end of the last chapter you probably felt that there must be a better way to do it.
However if you stuck within the limits of what you had learned from this book you would have written a
program something like:

#include "playpen.h"
#include <iostream>

using namespace std;
using namespace fgw;

int main({
playpen paper;
paper.scale(3);
paper.plot(0, 2, black);
paper.plot(0, 1, black);
paper.plot(0, 0, black);
paper.plot(0, -1, black);
paper.plot(0, -2, black);
paper.plot(2, 0, black);
paper.plot(l, 0, black);
paper.plot(-1, 0, black);
paper.plot(-2, 0, black);
paper.display(;
cout << "Press RETURN to end";
cin.get(Q);

www.manara

If you feel there must be something not quite right about a block of almost identical paper.plot()
statements then your instincts are right on the ball. Good programmers do not like repeating themselves or
even almost repeating themselves. Quite apart from pure laziness there is the issue that if you discover a way
of improving code you will have to find every place you wrote the same thing in order to change it. Any time
that you have a sense that you are repeating something you have already written, stop and ask yourself if you
can arrange to write it only once. There are various program elements designed to reduce writing the same
code. We are going to look at one of them in this chapter.

If you look at the above code you will see that the points being plotted break into two subtasks, plot a
set of points vertically and plot a set of points horizontally. You probably thought in terms of drawing two
lines, one horizontal and one vertical. Put that view to one side for a moment; it is useful but we must learn
something else first.

Look at the plots that produced a short vertical line. Notice how they are almost identical except that
the second number changes from 2 to —2 in steps of one. There are five points to plot. Effectively you have
to repeat something five times with a minor variation. There is an idiom for repeating something a fixed
number of times based on a mechanism called looping or iterating.

for-Loops

Think back to the task of getting your blind guest to the bedroom. Along the way he has to negotiate a set of
stairs. You probably did not tell your guest to take each step of the staircase individually. You might have
written something like: “You are now at the bottom of the staircase. There are 20 steps.”” Your guest would
start at the bottom and count the steps until he reached twenty. Then he would stop.

The process might go like this:

Stand at the bottom of the staircase (and, almost unconsciously, ask:
‘Have I counted to 20?7’ ‘No, so continue.’)

Climb a step. Count ‘1’. In other words we do not consider the floor to be
the first step. (‘Have I counted to 20?’ ‘No, so continue.’)

Climb a step. Count ‘2’. Now you are on the second step. (‘Have I counted
to 20?7’ ‘No, so continue.’)

Climb a step. Count ‘3’. That is the third step. (‘Have I counted to 20?7’
‘No, so continue.’)

Climb a step. Count ‘20°’. (‘Have I counted to 20?7’ ‘Yes, so stop.’)

Think back to the start. Which step were you on when you were standing at the bottom of the
staircase? If you count backwards from “1” you get °0”". In other words, before you climb any steps the
count stands at zero. Many people are surprised by this idea because they have an image of counting from 1,
but that is not the case. Let us see how we can write something like that in a program-like style.

start a count at zero;
again: have I reached twenty? if yes, stop
if no, climb another step
increase the count
repeat from ‘again’

Programmers quite often write things like that while they are trying to get a handle on a problem. We
call it pseudo-code.

www.manara

If you look at those statements you will see that there are essentially four of them:

e Set up the start conditions
o Check if we have finished
e Do some action

e Increase the count and go back to check for completion

This general structure is so common in programming that most programming languages provide a
special structure for expressing it. In C++ it is a for-statement and looks like this (this still contains a little
pseudo-code — cTimb_a_step):

for(int count(0); count != 20; ++count){
climb_a_step;

The sequence of the four parts has been modified by moving the action part to the end because there
might be several things to do each time we repeat. The structure is introduced by for, which is a C++4-
keyword. That means it is a word that has a built-in meaning that is the same everywhere it is used. for is
always followed by an open parenthesis and then three expressions that are separated by semicolons. Any or
all of the expressions can be empty (technically called a null expression). In this case, all three expressions
actually have some content.

The first expression, the initialization expression, gives the starting point. In this example, I have
written int count(0). That creates a variable (an object with a value that can vary) called count whose type
is int. The 0 in parentheses is called an initializer and it provides the initial value for count, zero in this case.

Because int is one of the built-in C4++ types (provided by the language), Quincy displays it in blue
(the names of the built-in types are keywords). An int variable can store a whole number from a limited
range of values. C++ guarantees that the range will be at least —32767 to 32767. That range is enough for
many purposes. Later we will see what we can do if we must have a bigger range.

The next expression in our for-statement, the continuation condition, uses one of the C++ special
operators, !=, which stands for “not equal to”". It gives the condition for continuing with the for-statement.
As it has just created count with a value of zero, count is not yet equal to 20 so the program continues. It
does not continue with the third expression (++count), but with what comes after the closing parenthesis. So
it executes c1imb_a_step;.

The part immediately after the closing parenthesis of the for-statement (c7imb_a_step, in my
pseudo-code example above) is called the controlled or action statement. The action might be a simple
statement (even an empty or null (do nothing) statement) or it might be a compound statement enclosed in
braces (which might still be a single statement — some programmers meticulously use compound statements
for controlled statements). The program completes that action and then returns to the last of the three
expressions in the parentheses.

In this example, the final expression, the end of loop action, uses another C++ operator, ++ (called
increment), which causes the object referred to by the following variable name to be increased by one (i.e.
count goes from 0 to 1, then from 1 to 2, etc.). Having done that, the program backs up to the test
expression and checks to see if it has reached the end. It hasn’t yet so the controlled statement repeats but this
time with count=1. The program keeps going until count reaches 20, and then stops (climbing steps).

Here is another snippet of code using a for-statement:

for(int i(0); i != 5; ++i){
plot(0, 2-i, black);

www.manara

This time we have a complete piece of C4++ code. I have used i as my control variable (so called

because it is the one whose value controls when the loop stops). The program will continue to loop round
executing the controlled statement (or block of statements) increasing the value referred to by i by one each

time then checking to see if it has reached 5. If it hasn’t it will go round the loop again. This time the

controlled statement uses the current value of i so each repeat is slightly different. Let me spell it out for you:

Start an int called i at 0

Check that it isn’t 5

Plot the point (0, 2) in black on paper
Increase i by 1 to make it 1

Go back and check that 1 1is not equal to 5
Plot the point (0, 1) in black on paper
Increase i by 1 to make it 2

Go back and check that i is not equal to 5
Plot the point (0, 0) in black on paper
Increase i by 1 to make it 3

Go back and check that i is not equal to 5
Plot the point (0, -1) in black on paper
Increase i by 1 to make it 4

Go back and check that i is not equal to 5
Plot the point (0, -2) in black on paper
Increase 1i by 1 to make it 5

Go back and check that i is not equal to 5
It is equal to 5 so stop repeating

Please take the time to follow that through. Make sure you understand how the for-loop that is

provided by a for-statement works.
Now you have got the idea, check the following:

for(int i(0); i !=5; ++i){
paper.plot(2-i, 0, black);

Yes, it plots five points but this time horizontally from (2, 0) to (=2, 0). Suppose that you wanted to

go the other way (the result will be the same) from (—2, 0) to (2, 0). A simple change accomplishes
that — replace the contents of the controlled block with:

paper.plot(i-2, 0, black);

Counting from zero

happened to work differently.

Many people have difficulty getting accustomed to counting from zero. Even programmers coming
from some other programming languages can have difficulty because the language they first learnt

In C4+4-, counts always start at zero. Unfortunately English does not make it particularly easy to
talk about this. And we even have this problem with different English-speaking cultures. Which is the
first floor of a hotel? In US hotels and international hotels that belong to US-based companies the first

www.manara

YOU CAN LOOP

floor is the one at street level. The one below that is the basement, and if there are several they might
be numbered B1, B2, B3, etc. There is no floor between B1 and the first floor.
In the UK (and much of Europe) the street level floor is called the “‘ground floor’” and the first

floor is the one above that. So in this case there is a floor between the first basement and the first floor.
In effect there is a floor zero.

C++ is among the computer languages that count more like the British way of numbering the
floors of a building; it starts at zero. We follow a pattern that can be best illustrated as:

Set target count
Set current count to zero
Tloop: is current count equal to target count, if yes STOP
do action
increase current count
repeat from Tloop

As compared with the pattern:

Set target count
Set current count to zero
do action
loop: increase current count
is current count greater than target count, if yes STOP
do action
repeat from Toop

Both these patterns make sense but only the first one caters for the possibility that the action
might not be carried out at all. There are other looping patterns and you will learn later about
programming mechanisms that model them, including the second one above.

Time to go back to drawing a cross on the screen. Here is a new version that is simpler (has fewer
statements) than the one we started with.

#include "playpen.h"
#include <iostream>

using namespace std;
using namespace fgw;

int main(){
playpen paper;
paper.scale(3);
for(int i(0); i !'=5; ++i){
paper.plot(2-i, 0, black);

www.manara

paper.display(Q);
cout << "Press return to end";
cin.get(Q);

}

Note that I have indented some statements. This pretty-printing is a convention to allow programmers
to see the structure of a piece of source code. The compiler does not care, but most humans do. Eventually,
laying out your source code to show its structure will become second nature. Indeed you will become
uncomfortable with code that is not pretty-printed and your fingers will itch to change it.

The above program is not much shorter than the one you wrote and in fact you might argue that it was
less efficient because the point (0, 0) gets plotted twice. But the convenience and ease of modification is well
worth it. Suppose that I told you I wanted a cross with a long tail and longer arms than the one we have. A
quick change with the editor and it is done. Here are the bits that need to be changed:

for(int i(0); i !'= 9; ++i){
paper.plot(4-i, 0, black);

}

for(int i(0); i != 8; ++i){
paper.plot(0, 2-i, black);

You will notice that I have only had to change three numbers (I have highlighted them in bold
typeface). That must be good news.
Time for some more practical work.

Drawing a Cross Revisited

Open up Quincy and start a new project (call it draw_cross but this time save it in the sub-directory titled
Chapter 2). Look at the options in the tools menu of Quincy. Make sure that the Include item has the right
entry (the sub-directory called fgw_headers in the same directory as Quincy2002). Also make sure that all
the options, such as “debugging’’, have been selected. Make a habit of doing these things every time. That
will save you a lot of puzzlement and frustration — always make sure the choices are those you want.

Now include the same files that you did before (fgwlib.a and libgdi32.a). Be careful that you include
them in the right order. Open a new C++- source file and type in the following:

#include "playpen.h"
#include <iostream>

using namespace std;
using namespace fgw;

int main(QQ{

playpen paper;

paper.scale(3);

for(int i(-4); i !=5; ++i){
paper.plot(0, i, black);

h

for(int i(-4); i !'=5; ++i){
paper.plot(i, 0, black);

www.manara

paper.display(Q);
cout << "Press RETURN to end";
cin.get(Q);

}

I have taken this as an opportunity to demonstrate that we can vary aspects of a for-loop. We do not
have to start at 0, though it is almost always a good idea to do so when we want to count up to a specific
value. In other words when we want to repeat something a known number of times we usually start at zero.

Save your work, giving it a name (I will leave you to choose names for files from now on, but
remember that names should be helpful in guiding your expectations as to what the file contains) and
compile it (F5). When you have corrected any errors and get a “‘build successful”’ report, include this file in
your project and press F9 to create and run the program.

Play around with this program until you are happy with the way it works. By playing around, I mean
add things like color and scale; change the position and the size of the cross. Even when I do not explicitly
ask you to play with a program, I expect you to do so. You will not do any permanent damage by
experimenting with the programs I give you, though you just might (although it is very unlikely) lock your
computer up so that you have to switch it off to regain control.

Practicing Looping

The following are some suggestions for programs you can write that will help you become more confident in
using for-statements in your programming. I hope you will spend some time trying them. At the end of the
chapter I give my solutions with a commentary where relevant.

Before you start the exercises there are a few things that will help you. You will need to be able to
display the value of an int variable (such as those we have been using to control our for-loops). You can do
this in much the same way that you output a message. The following short program should display the
numbers from 0 to 9 in your console window:

#include <iostream>
using namespace std;

int main(){
for(int i(0); i != 10; ++i){
cout << 1i;

If you try that program you will discover that its output is probably not what you wanted because there
are no spaces between the numbers. We can insert a space (or any other text, such as a comma and space)
between the numbers by changing the output line to:

cout << i << ;

or, if we want a comma and a space:

cout << i << ", ";

A special case is where we want to start a new output line. C++ provides a special code for a newline
character. Whenever we want,a newline character in our output we use '\n'. We will go into more detail

www.manara

about this in a later chapter, but to see it in action, try the following program:

#include <iostream>
using namespace std;

int mainQ{
for(int i(0); i !'= 10; ++i){
cout << i << "\n';
}
}

The result should be the numbers from 0 to 9 displayed in a vertical column.

Simple Arithmetic Operators

We have already used + (add) and — (subtract) operators in our source code. As they are identical to the
symbols used in mathematics I used them without making a comment. In the following exercises you will
also need to multiply.

Multiplication operator

Because of the potential for confusing the traditional multiplication symbol (x) with the twenty-fourth letter
of the English alphabet (x) most computing languages use the asterisk symbol (*) as a multiplication sign. So
instead of writing 2 x 3 when writing source code, we write 2 * 3.

Division operator

The conventional division sign in mathematics (<) was easily confused on older display devices with the
plus symbol (+) and is replaced in computer programming with the less common mathematical alternative
of “/”" (called a solidus). So instead of writing 4 <+ 2, in source code we would write 4 / 2.

Negative and subtraction operator

The same symbol is used in mathematics as an instruction to subtract and as a qualification of a number.
When the symbol we call “‘a minus sign”’ is placed between two numbers it is an instruction to subtract the
second number from the first. When a minus sign comes before a number without a preceding number it
describes the number as being a negative number.

For example 8 - 3 reads as “‘eight subtract three”” or “‘subtract three from eight’’. Notice that even in
English we do not always read strictly left to right.

However -8 reads as ‘‘negative eight’’.

In everyday speech we often read both uses of the symbol as “‘minus’ so we get “‘eight minus three”
and “minus eight”.

We have the same two uses of the minus sign in computing as well. It generally does not matter but it
sometimes helps to remember that minus may be either an instruction or a description.

EXERC\SE Write a program that displays the three times table in the form: 3, 6, 9, . . . (finish with 36) as
a single row of output. Your program should be a simple modification of the program above
that outputs the numbers from 0 to 9.

www.manara

Repeat Exercise 1 but display the answers in a vertical column in the form: EXERC,SE
1 X 3 = 3
2x3=6

Finish at 12 x 3 = 36. This is an exercise in combining output of numerical values
with symbols and newline characters (the ' \n' mentioned above).

Write a program that outputs a number, its square and its cube for all numbers from 1 to 20. EXERC’SE
Place the results for each number on a line; i.e. your output should start:

11 1
2 4 8
3 9 27

You will not be able to keep the output in neat columns with what you currently know
about output in C++ so do not spend time trying to do so. The solution to this exercise is a
program that is similar to that for Exercise 2.

Write a program that outputs the values for multiplication tables from 1 to 12. The results for EXERC’SE
each table should be on a single line (i.e. the way the results were displayed in Exercise 1).
There are many ways to achieve the required result but you should be looking for one that
only uses two for-statements.
Note: With your current knowledge you will not be able to display the results in twelve
neat columns so please do not spend time trying to do so.

Write a program that displays all 256 colors provided for your playpen objects. The result EXERC,SE
should exactly fill the Playpen. That window is 512 pixels by 512 pixels. If you display 16
colors on each of 16 rows using a scale of 32 the results fit exactly. You will need to
experiment to get the right starting points.
There is quite a lot of similarity between this program and the one for Exercise 4. One
good solution uses two for-statements. However, remember that at this stage in your
programming any program that produces the required output is satisfactory.

www.manara

CHAPTER 2

Write a program that produces a square hox with 9 pixels per side (this time you may need
four for-loops). Please note that where I label something as a task | consider it very
important that you do it before you read on.

Try some other shapes if you want, but not too many because in the next chapter we
will be covering another way to avoid repetition.

o HLaCN ZI‘JI_F.LI

www.manara

-

ROBERTA’'S COMMENTS

Following an earlier version of this chapter I had great difficulty in getting my head around for-loops. The original exercise
was to produce nine vertical lines evenly spaced across the Playpen.

In desperation and not wanting to appear too stupid to Francis so early in the book, I asked another programmer
friend to help. However, I asked how to solve the question without giving him enough information and the C++ code he sent
me was completely unintelligible to me at that time (although I do understand it now). So I struggled on trying to do it myself.
This resulted in what I thought were major problems. I thought I had broken Quincy because the program didn’t finish properly.
It turned out that during my experiments I had a continuous for-loop operating.

FRANCIS

Getting into an unending loop is going to happen to everyone at some time. Indeed it is part of the “rite of passage™ that you do so. It is
also useful to know how to get out when you have got yourself into this position.

The first thing is not to panic; nothing really bad will happen, your computer is more robust than that. Calmly close the
various files you have open in Quincy by clicking the close button at the top right corner of each window.

Next close down Quincy itself. Finally press CTRL C (i.e. hold down the CTRL key and tap the C key) and the program will
stop and close down.

Here is a tiny program you can use to practice getting out. This one does not run for ever but it will run for quite a long time
even on a fast machine.

// long Toop demo written by FG 10/06/03
#include <iostream>
int main(){
for(int i(0); i != 1000000; ++1i){
std::cout << 1 << "\n';
}
}

Once I had a copy of the much-improved second draft of Chapter 2, I didn’t have any problems. However, the exercises in
Chapter 2 were added at a later date and I didn’t actually try them until much later. The solution to Exercise 5 is useful for a later
chapter but I know I would have struggled to do it at this stage in the book — so don’t despair if you have to look at the answer.

Naming Files: ~ Although Francis has mentioned the importance of giving descriptive names to files I feel that it is
important to stress this because I didn’t pay enough attention to it. When I first started doing the exercises I simply named the
projects and files task1.PRJ or exercisel.cpp, etc., but in retrospect I wish I had used more descriptive titles. As you get
further into the book you will want to refer back to earlier programs and a descriptive name will be far more useful than
knowing which exercise it refers to. Now I would probably name Exercise 1 three_imes_table_row and Exercise 5
display_all_the_colors, for example.

Thinking up descriptive names is a very important part of programming because lots of other things will need names
too and even if the name seems long and cumbersome at the time it really is a worthwhile habit to develop.

www.manara

ENDNOTES

Remember that these are not the only solutions. They are not even the only good ones. They are just
the ones I chose to write within the restrictions of what you know from reading this book.

I am only providing the source code for main() in each case. To provide a working program you
need to include some header files and add using directives. Don’t forget the comments identifying the
writer and the date of creation.

Exercise 1

int mainQ{
for(int i(1); i != 13; ++i){
cout << i * 3 << ", "y
}

cout << "\n';

}

Exercise 2

int mainQ{
for(int i(1); i != 13; ++i){
"y 3o

cout << i << << i * 3 << "\n';

Exercise 3

int mainQ{
for(int i(1); i != 21; ++i){
cout << i << " "

LI 1 T SO O |

<< i * i <<

Exercise 4

int main(Q{
for(int table(l); table != 13; ++table){
for(int value(l); value != 13; ++value){

cout << table * value << ;

}

cout << "\n';

www.manara

SOLUTIONS TO EXERCISES

Exercise 5

int main(){
playpen paper;
paper.scale(32);
for(int row(0); row != 16; ++row){
for(int column(0); column != 16; ++column){
paper.plot(column-8, row-8, (row * 16 + column));
paper.display(Q;

}
cout << "Press RETURN to end display.";
cin.get(Q);

This one merits a few comments. The nested for-loops provide coverage of the visible Playpen
when the scale has been set to 32 as long as we remember that the origin is in the middle of the screen,
hence the coTumn-8 and row-8 in paper.plot()

What I had to do next was to work out which color to display at each point. Basically I wanted
colors 0 to 15 on the bottom row, 16 to 31 on the next row, etc. In other words each row must start
with the color that is sixteen times the row it is on. As we move across a row we want to move to the
next color. Go back and look at (row * 16 + column) and I think you will find it does just that. The
parentheses are only there to help the human eye identify the calculation being used as a single value:
the compiler would still do the right thing without them.

summary
Key programming concepts

» Programmers avoid repeating source code.
» A common mechanism for providing repetition in many programming languages is a for-loop.

C++ checklist

» C++ provides the for-statement as a method for repeating actions. A for-statement has four
parts: the initialization expression, the continuation condition, the end of loop action and the action
(compound) statement.

» The initialization is done once before the first check of the continuation condition. The continuation
condition is checked before the action statement is undertaken. If it fails, the for-loop is finished.
The end of loop expression is done after each action statement has been completed.

» C++ has many operators. Most of them are straightforward with obvious meanings. You can find a
summary of all the operators in Appendix B on the CD. Those we have used (and others we might

www.manara

ENDNOTES

have) for making decisions in this chapter are:

< less than

> greater than

1= not equals

<= less than or equal to
>= greater than or equal to

— ““compares equal to’”” and must not be confused with
=, meaning assignment

++ increase the stored value by one

= decrease the stored value by one

» C++ supports the traditional arithmetic operations but uses * for multiplication and / for division.

» C++ has a number of built-in arithmetic types. The simplest of these is called int and it provides
sufficient storage for simple whole number values. The language guarantees that an int can store
any value from —32767 to 32767.

» To display the value of an int variable, stream it to cout with the << operator.

cout << 1i;

displays the current value of i in your console window.

» '\n' represents a newline. When it is streamed to cout with the << operator, subsequent output is
placed on a new line.
» When we create a variable we can (and usually should) provide its initial value.

www.manara

CHAPTER @

You Can Write a Function

A function is another tool for avoiding writing things twice. In this chapter I will introduce you to the
design, implementation and use of functions in your programming. A second benefit of using functions is
that they provide a mechanism for naming what you are doing.

Drawing a Square

When you did Task 2 at the end of the last chapter you probably found yourself cutting and pasting source
code and then making a couple of small changes. Here is a typical solution to the problem of drawing a
box (I have left out the #include statements and using directives):

int main(){

playpen paper;

paper.scale(3);

for(int i(0); 1 !'= 9; ++i){
paper.plot(i, 0, black);

}

for(Cint i(0); i != 9; ++i){
paper.plot(0, i, black);

}

for(int i(0); i !'= 9; ++i){
paper.plot(i, 8, black);

}

for(int i(0); i !'= 9; ++i){
paper.plot(8, i, black);

}

paper.display(Q);

cout << "Press RETURN to end";

cin.get(Q);

www.manara

You may even have condensed the four for-loops into a single for-loop:

for(int i(0); i !'= 9; ++i){
paper.plot(i, 0, black);
paper.plot(0, i, black);
paper.plot(i, 8, black);
paper.plot(8, i, black);

However, you surely must have felt an echo of your feelings at the end of Chapter 1. Once again we are
repeating ourselves. Once again there is a better way. The loop concept addresses the problem of doing the
same general thing several times in succession but has little to offer when we want to do the same basic thing
in several different places (in this case plotting a line of pixels to put a line on the screen as one arm of a
cross, the side of a square, etc.).

For this problem we need another basic building block of programming: the function.

The Function Concept

A function is another fundamental element of programming. Functions in computer programming have their
equivalents in all those other kinds of program that I mentioned earlier. You do not tell your blind guest how
to open and close a door. You assume they know and give the instruction open the door. You might tell them
which side the door handle is and you might tell them what kind of handle — that is just data fed into the
“door opening function’ that they already know.

Think about the process of using an ATM. The process requires several things and has an expected
consequence. You need a suitable card that must be inserted in the slot in the machine and you need to key
in your PIN. If everything is successful you get your card back as well as anything else you asked for.

The basic function here is that of using an ATM, which requires a card and a PIN and returns your card
to you. There are many possible side effects to your use of an ATM, one of which is that the machine will
hand out some money to you.

A programmer might represent this process in pseudo-code:

card & use_ATM(atm & machine, card & users_card, int pin){
if(not valid(users_card, pin)) do_invalid();

else {
do{
display_menu()
select_option();
do_option();
} while(not finished);
}

return users_card;

Even if you had never seen a computer program before, the above would give you a fair idea about
using an ATM. The one curious feature that you might want to ask about is those three uses of “&"’. When
we place an ampersand directly after a type’s name we are specifying that we will need the original object as
opposed:to-a-copy=Wecall-this-a-reference because it will refer to an existing object rather than creating a
new one. Confused? Well do not be. Think how the ATM machine works: it needs your card and it will
return that card to you. However it only needs a copy of your PIN, which you supply by keying it in. It
cannot destroyor change your PIN but it can do both to your card because it has the card, not just a copy.

www.manara

If you wanted to know how to use an ATM, only the first line matters to you. It tells you that you will
need an ATM, a card, and you will need to supply a copy of a PIN. It also tells you that you will get a card
back (it does not actually tell you that you get the same card back, but that is a minor detail that we will
sweep under the carpet for now).

For a second example let me return to climbing the stairs. The general process might be described in
pseudo-code by:

nothing climb_stairs(staircase const & stairs, person & me){
for{int 1(0); i != stairs.number_of_steps(); ++i){
me.step_up_one_step();

We need an actual staircase and an actual person to climb stairs. Climbing a staircase should not change
it, which is the significance of the const (a C++4 keyword which I will have more to say about later).

There are many other things that can be represented as functions. A function is a process that starts with
some ingredients, does something with them and produces a result. A cookery recipe is a function that gives
instructions for processing its ingredients into some form of food. Starting a car is a function that uses a key,
a car and a driver and results in a car with its engine running. Setting your VCR is a function that results in a
recording of the TV program you want to watch.

Some functions have no end result as such; they do something to one of the initial ingredients.
Climbing a staircase is like that; it changes the person involved in several ways, the most important one being
that they have changed their location.

However, many functions hand a result back to the user. We call the thing handed back a return value,
and we specify the type of this before writing the name of the function. In the case of the use_ATM()
function, the type of the return is a card &, and what we get back is a card, hopefully the card we put in.
Reference types are commonly provided to a function and we will use them a lot. They are far less common
for return types (the values or objects that are returned when the function finishes).

Functions in C++

We have two major kinds of function in C++. The first are often called ““free functions’. The second are
called “member functions” and provide the behavior for non-fundamental types (ones that are not built
directly into the language). You have already used member functions when you wrote such things as
std::cin.get() and paper.plot(0, 0, black). Whenever you follow an object name (std::cinand
paper in the examples) by a dot and then a name that ends with a pair of parentheses, the item after the dot
is a member function. We will look further at member functions in Chapter 5. For the rest of this chapter we
are going to focus on free functions, i.e. ones that are not tied to providing behavior for objects of a
specific type.

Functions allow us to name an activity. Many activities require specific data and so we need a
mechanism for handling that as well. In our ATM example, a function to validate the user requires that you
provide your card and key in your PIN. A simple ATM program in C++ pseudo-code might look like this:

int main(){
validate_user(atm, card, pin);
get_money(atm, amount);
return_card(atm);

In order to make sense of that code we need to know that validate_user(), get_money() and
return_card(@)“are the names-of functions and we need to know what kind of data each one requires. We

www.manara

will also eventually need to know how to actually carry out the action for each. Notice that I do not need to
know how the machine handles these functions in order to describe how to use an ATM.

Let us move our focus back to computer programming. We have to look at three fundamental aspects
of functions: declarations, definitions and uses.

A function declaration tells the compiler that the name provided is the name of a function. It also tells
the compiler what types of data the function will require when it is used in your source code and what type
of data it will return (hand back) when it finishes.

A function definition is a set of instructions to tell a compiler how a function works (often called an
implementation).

A function use (often referred to as calling a function) is exactly what it sounds like (an instance of
using the function).

Going back to our use_ATM example, the essential declaration is the line:

card & use ATM(atm & machine, card & users_card, int pin){

That says that there is a function called use_ATM that requires an actual ATM and a card and that will
need to know what your PIN is. At the end the ATM will return a card.
In programming terms we use the ATM with a statement such as:

use_ATM(this_machine, my_card, my_PIN);

We do not need to know how the ATM works in order to use one. Put your card into a machine and
type in your PIN then follow the instructions on the screen. However the manufacturer of the ATM does
need to know because it has to provide all the mechanisms that make it work the way the user expects. It is
the latter information that is provided by a definition.

Writing a Function

There are two common ways of developing a function. We can start by writing code that calls (uses) it
(equivalent to my using an ATM to get some money) or we can start by writing a declaration (equivalent to
describing what is needed). Whichever way we start, experienced programmers leave writing the definition
(providing the mechanism that will make a declaration do what the documentation says it will do) till last.
They will take time out to write and compile a program to test their work. The definition will not be needed
till we come to run the test. In addition, the definition is the thing that we will sometimes change as we spot
better ways to achieve our objectives or correct faults (called bugs) in our code. We should have test
programs that check that such changes are purely internal and do not change programs that use the function.

In the following, I walk you through developing two functions, one by starting with code that calls it
and one by writing the declaration first.

Let us look at the idea of a function by taking the problem of drawing a line across a Playpen and
considering the three aspects of a function.

Using a function

It may seem a little odd to start at the end as it were. However that is almost always where programmers start
the design of a function. We think about how we want to use it. In other words, ““What should it do?”” and
“What will it need?”” When we call a function to draw a cross in a Playpen we will wish to provide:

Information about who “‘owns’” the Playpen.

e Details of the cross such as where to start the crosspiece and how many pixels make it up, where to start
the upright and how many pixels that is made of.

e What color to use.

www.manara

We will also need to think of a good name for the function, preferably one that does not need
comments to explain it. Less obviously we will have to decide what the program gets back from the function.
All normal functions in programming return something even if we promptly ignore it. However in the case
of this task I am going to ignore that requirement for now (but not for long, because I will have to deal with
that when I come to the declaration).

Typically I might want to write something like:

int mainQ{
playpen paper;
int const left_x(-5);
int const left_y(0);
int const width(1l);
int const bottom_x(0);
int const bottom_y(-6);
int const height(11l);
draw_a_cross(paper, left_x, left_y,
width, bottom_x, bottom_y, height, black);
cout << "Press RETURN to end";
cin.get();

Before we look at the last statement (the call of the draw_a_cross function) a word about the previous
seven statements. The first of those declares paper to be the name of a playpen object. It also has the effect of
creating a playpen object of that name (i.e. it is also a definition; that is normal for objects: declarations are
also definitions). The remaining six statements declare (and define) the names of six integers with fixed
values; that is the significance of the const in each declaration (and definition — in future I will assume that
define subsumes declare and definition subsumes declaration). The result is that Teft_x becomes a name for
—5, Teft_y a name for 0 and so on. Remember the ‘““magic numbers”” mentioned in Chapter 1? We always
try to give descriptive names to the numbers we use. The technique I have used in the above code is common
among competent programimers.

We want to draw a cross in the window belonging to the playpen (remember that is the general type)
object called paper (and that is a name referring to a specific object of that type; think of the difference
between dog — a class of animals — and Fido, a specific dog). The upright is to start at (bottom_x,
bottom_y) and have height pixels (screen points), the crosspiece to start at (Teft_x, left_y) and have
width pixels. And we want the drawing done in black.

Or, if T am happy with a few magic numbers:

draw_a_cross(paper, -5, 0, 11, 0, -6, 11, 0);

That should give you a good idea as to why we prefer to use named values even if it does make our
source code lengthier and so take longer to type in. Even if you do not agree now, try to read your code
written in this way a month from now and see if you still feel that way.

Now we have a typical use, let us see how we can tell a compiler that there will be a function called
draw_a_cross that can use the information we provide.

Declaring a function

Here.we-have to-think-about-what-eur-funetion will hand back to the program. draw_a_cross is a function
that has no obviously useful data to give back — we are only interested in what it does. Because the rules of
C++ (along with many other programming languages) require that a function has some form of return, the
designers of C4-+ invented a very special type called void (as it is a C++ keyword, Quincy will display it in

www.manara

blue). This type can be used anytime we want to specify that a function will not have a useable return value.
In other words a void return type says that the function does not hand back anything when it ends. So we
can start our declaration:

void draw_a_cross

We must next list the types of data that will be used by the function (the ingredients of the recipe).
This list is called a parameter list. It is a list of types in the order in which the caller will provide the data. The
parameters are separated by commas and placed inside parentheses. We could write it like this:

void draw_a_cross(fgw::playpen &, int, int, int, int, int, int, fgw::hue)

However if we do so, we have magic again. We would have to add a bundle of comments to explain
those six int parameters. Once you know that fgw: : hue is the type used for palette codes and fgw: :playpen
is a type for handling a Playpen object, we probably do not need comments to explain those two parameters.
(I will remind you about the & in a moment.) Note that both hue and playpen have been qualified with the
library to which they belong. You should always use the full names in declarations because we normally
place declarations in header files (more about these shortly). Never (until you are an expert) write a using
directive in the header file.

Rather than litter our code with comments we take advantage of the grammar (language rules) of C4++
that allows us to provide a name for each parameter. These parameter names in a function declaration just
document what the parameters are; in a declaration they have no other significance. We should make a
special effort to choose names that document the parameters. Here is my second version of a declaration for
the draw_a_cross function:

void draw_a_cross(fgw::playpen &,
int left_of_cross_piece_x, int left_of_cross_piece_y,
int width_cross_piece_bar,
int bottom_of _upright_x, int bottom_of_upright_y,
int height_of_upright,
fgw: :hue);

Some authorities would advocate naming all the parameters; that is not my style. I focus on the
parameters that need to be documented because the type’s name is not enough.

Note the semicolon at the end; that tells the compiler that this is just a function declaration and not a
definition as well (we will get to the definition in the next section).

Now here is a further explanation of the & From the perspective of the user of the function, it stands as
a warning that the function will access the original data and so may be able to change it. In this case that is
exactly what we want. We want the function, draw_a_cross, to change the playpen object so that it displays
a cross in the Playpen. There is sometimes an additional benefit because data provided to an & parameter
(called a reference parameter) will not be copied. This ““do not copy’’ behavior matters for large objects (for
example a playpen object uses over a quarter of a megabyte of RAM) where copying can use valuable space
and also take time. It is also important because some objects cannot be copied (for example, you cannot
copy std: :cout).

Notice that it is the function designer’s job to decide whether a reference parameter is desirable or not.
The user of the function is only concerned if they have something that must not be changed. The use of a
plain reference parameter.in-a-declarationwarns the caller that the object passed to the function may be
changed by it. It also means that the compiler can provide some protection by refusing code that tries to hand
over a const qualified object (i.e. one that|the programmer has specified as immutable) to a function
declared with a plain reference.

www.manara

Defining a function

In order to write a function definition we must provide all the information required for a declaration (that
means that every function definition is also a declaration) but we have to add source code that tells the
compiler how the function does its job. This is like the difference between telling someone to open a door
and giving them exact instructions as to how doors are opened. The former is a use of a function (door
opening) and the latter is a definition (how to open a door).

In general, the function definition will use the data provided by the user via the parameter list (i.e. each
piece of data — called an argument — is matched to the corresponding parameter). This means that all
parameters that are used (there are rare occasions where a parameter is not used) must be named in a
definition. There is no requirement that the names used in a definition are the same ones used in a
declaration. I often use different parameter names in a definition because in the context of a definition I want
good names for use in my source code rather than names that document what the parameters are for. The
documentary names that are suitable in declarations are often too long for convenient use inside the source
code that defines a function.

The second aspect of a definition is that instead of ending with a semicolon it ends with a block of
statements enclosed in braces. It is the opening brace of the block that tells the compiler it is dealing with a
definition rather than just a declaration. This is how I might define my draw_a_cross() function:

void draw_a_cross(playpen & paper,

int Teft_x, int left_y, int width,

int bottom_x, int bottom_y, int height, hue shade){

for(int i(0); i != width; ++i){
paper.plot(left_x + i, left_y, shade);

}

for(int i(0); i != height; ++i){
paper.plot(bottom_x, bottom_y + i, shade);

Notice that as I have used the simple names playpen and hue from my library that the above definition
will have to be preceded by a using namespace fgw; directive and a #include "playpen.h" statement.
Now we can replace the program that drew a cross with:

#include "playpen.h"
#include <iostream>

using namespace std;
using namespace fgw;

int main(){
playpen paper;
paper.scale(3);
draw_a_cross(paper, -4, 0, 9, 0, -4, 9, black);
paper.displayQ;
cout << "Press RETURN to end";
cin.get(Q);

www.manara

Yes I know that I have all those magic numbers, but I want to focus on the way that the call to
draw_a_cross () works with the declaration and definition. In order that the compiler can compile the above
it must be able to see the declaration of draw_a_cross().

Where declarations and definitions go

There is a rule in C++ that says that things must only be defined once. However declarations must be visible
wherever we want to use the function, type or other entity. C++4 programmers manage this by putting
things that are shared (at this stage mainly function declarations) into special files called header files. The
parts of source code that must be unique such as the definitions of functions are placed in implementation
files. These two kinds of file are conventionally distinguished: header files have a .h extension;
implementation files have a .cpp extension.

IDEs — Quincy, in our case — recognize the different extensions and treat the files differently. You have
to include all the required implementation material in your project. Implementation material is either in a
user-written implementation file or in a provided library file.

Any header (.h) files used by your implementation (.cpp) files must be in places where Quincy can
find them. It knows where the headers are for the C4+ Standard Library. It knows where the header files are
for my library because you tell Quincy that as part of the setup for a project (when you tell it that incTudes
are in fgw_headers). It can also find header files if you place them in the same directory as the project.

The following practical session will take you through the process of creating header and
implementation files for functions.

Header and Implementation Files
Creating a header file

Open Quincy and create a new project. Make the target name drawing and select Chapter 3 as the target path.
Save it. Now insert the fgwlib.a and libgdi32.a library files into the project. (Refer back to Chapter 1 if you
need help with getting the project started so that you set such things as the include path correctly.)

Now create a new header file called drawing_functions.h (Quincy will add the .h for you as long as you
select the header file type from the New dialog in the File menu).

Because the declarations that you are going to put in this file use names from my graphics library, such
as fgw: :playpen and fgw: :hue, we need to tell the compiler about those, so type in:

#include "playpen.h"

Type in the declaration of draw_a_cross() that I gave you earlier. Now there should be four items in
your header file, including the two comment lines with your name and date.

I want you to acquire the best habits right from the start so I am going to ask you to add three more
lines that provide extra safety that is sometimes needed by header files. We need to ensure that the same
header file is not included more than once in an implementation file (things can go wrong if you include a
header file twice in an implementation file, perhaps once directly and once as an include in another
header file).

Right at the start of the header file add these two lines:

#ifndef DRAWING_FUNCTIONS_H
#define DRAWING_FUNCTIONS_H

Now add as the very last line in the file:
#endif

(make sure you-complete theline by pressing the Return key).

www.manara

ROBERTA

Why is it important to press Return?

FRANCIS

When the compiler comes across a #include instruction it finds the header file and pastes the contents in as a substitution for the #include
instruction. If the header file does not end with a newline, whatever comes next is added directly onto that unfinished line.

If you are lucky the result is nonsensical and the compiler will give an immediate error. However there is a real chance that the
result of adding the first line of the next file directly on to the end of the last one will not cause an immediate error. The resulting error is
not diagnosed till many lines later in an entirely different file from the cause.

Any time you get an error in a header file that has been used successfully before, suspect that the cause may be an earlier
included file missing a final newline character.

Note that the above protection against multiple inclusion is only for header files (the ones in which we
put declarations and include other files of source code). Whenever you create a header file you should play
safe with something like those first two lines and the last line. For other header files replace
DRAWING_FUNCTIONS_H with the actual file’s name written in all uppercase with the dot before the “h”
replaced by an underscore. One day you will forget to do this in a case where it matters. The result will be
that you will see a whole bundle of error messages complaining about redefinitions and other faults. For
now, get in the habit of writing those lines (consider them as a magic invocation to ward off evil — in
Chapter 5 we will come to code where it matters).

Now save the file (in the Chapter 3 sub-directory).

Testing the function

Create another C++ source code file and call it test_drawing_functions.cpp. Type in the source code that I
provided above for main(). You will need to add in a #include "drawing_functions.h" so that the
compiler can see the declaration of draw_a_cross() — that is the principal purpose of header files, to provide
the compiler with declarations when they are needed. This is another form of “‘write once, use many times’’
because putting declarations in header files means that they can be used wherever they are needed with only
the cost of including the header file.

Now use F5 to compile test_drawing_functions.cpp. When you have made any corrections and it
compiles successfully, add the file to the project. If you try linking and running it by pressing F9 you will get
errors from the linker that complain about missing definitions. That is hardly surprising because we have yet
to define draw_a_cross. Time to do so.

Creating an implementation file

Open a C++ source code file and type in the definition of draw_a_cross (as above). You will need to
include the following two lines before the definition of draw_a_cross:

#include "drawing_functions.h"
using namespace fgw;

Save it as drawing_functions.cpp. Use F5 to compile this file. Correct errors and when you get a
successful-build-add-it-to-your project=Press F9 and everything should now link and the program should run.
Note that I went from writing some code that used draw_a_cross to writing a declaration of that
function. At that stage I started testing. Then I added the definition (i.e., the implementation of

draw_a_cross)Finally I successfully ran my test code.

www.manara

Now put that to one side while we back up again and focus on functions that draw horizontal and
vertical lines on your screen.

Drawing Lines

Let us now have a look at designing a function in the alternative sequence; work out the declaration, write a
test and then write the definition. For this I am going to develop a function that draws a line across the screen.

Designing a function

The property of lines that go straight across the Playpen is that all the pixels that make them up have the same
y-coordinate. However for most monitors it will also be a horizontal line so I am going to call the function
draw_horizontal_line. Here is the declaration (add this declaration to your drawing_functions.h

header file):

void draw_horizontal_line(fgw: :playpen &,
int vertical_position, int begin, int end, fgw::hue);

The first parameter, fgw: :playpen & (the full name because this goes in a header file) declares that an
actual pTaypen object is provided by the call (use). That is all the & means. We read it as “‘playpen reference”
or “‘reference to playpen.” We need the actual playpen object because we are going to draw a line on it.

The next three parameters are all of the same type (int), so what do they represent? I have added
names to provide the answers so that anyone using draw_horizontal_line() will know which parameter is
which. That will tell them the order in which they must provide the arguments (data for the parameters).
These are value parameters because all I need is the number or value of each. The function can discard these
values when it finishes (like the ATM and the PIN).

The last parameter is another value parameter. I have chosen not to provide a name in the declaration
because the parameter type — fgw: :hue — says all that I think is needed.

So we could read the declaration as: draw_horizontal_1ine() is a function that returns nothing (its
return type is void) and that takes a playpen object by reference, an int value that represents the vertical
position of all the points on the line, two int values that represent the values of the beginning and the end of
the line and a hue value that specifies the color of the line.

Testing the function

Once we have a declaration of a function we can use it — usually referred to as ““calling’” it. Calling a function
requires that you write the function name (without the return type) and follow it with data (often called
arguments) in parentheses. The arguments will be matched up with the parameters listed in the declaration.
In other words the names of types will not normally be found in a function call.

As soon as the compiler can see a declaration, it will accept uses of that declaration. It does not need a
definition; only the linker, which puts all the pieces together to make a program, needs a (compiled)
definition. For example, if I want to draw a line from (—5, 10) to (12, 10) with red2 on the Playpen via an
object called paper I would write:

draw_horizontal_line(paper, 10, -5, 12, red2);

Do not take my word for that, add that statement into the main() function in
testzdicwing-functions:cpp-and-try-to.compile it by pressing F5. It should build successfully. However when
you press F9 you should get complaints about a missing definition. The header file included a promise that I
would provide the definition of a draw_horizontal_1ine() function that could handle the data I used in the
call, but the linker was unable'to find any such code in any of the files in the project.

www.manara

Calls can sometimes look deceptively like declarations. The most obvious difference to an experienced
programmer is that a call does not start with the name of a type. The next feature of a call of a function is that
the parentheses contain a list made up of values and variable names. Make sure you now have a clear
understanding of the difference between a call (use) and a declaration.

Defining the function

At the top of a recipe is a list of ingredients. When you come to make your cake you will need actual
ingredients or close substitutes (yes we have an analogue of that in programming). The rest of the recipe tells
you how to produce your cake from the ingredients (and return a cake). When you go shopping you only
need the list of ingredients. Indeed you might be a hopeless cook and simply be getting the ingredients for
someone else to use. However we eventually need the instructions that make use of the ingredients. In
programming terms, we need a definition or implementation.

ROBERTA

I find the terms definition and implementation a bit confusing. It seems that they are used interchangeably. Is there any
difference and why are there two terms in use when one would do?

FRANCIS

This is a hard question because much of the time they can be used interchangeably and yet they are not synonyms. We would never talk
about implementing a variable or object. When we talk about defining a type we normally mean saying what it will do (i.e. what its
behavior will be). Providing the code that will provide that behavior is called “implementing a type”. However when it comes to functions
the terms implement and define are just about interchangeable.

The following is a definition of draw_horizontal_Tine(Q):

void draw_horizontal_line(playpen & pp, int vy,
int x1, int x2, hue c){
for(int x(x1); x != x2; ++x) pp.plot(x, y, C);
3

Well almost. It has a nasty bug (that is the term programmers use for code that compiles but will
sometimes not execute correctly) in it. Before you read on, see if you can spot it. You will have to be honest
and stop here for a moment. The kind of bug in this source code is nasty because when you simply test the
code you might entirely miss the problem and never use any tests that show it up.

By the way, did you notice that all the parameters now have names, and that they are not the same ones
that I used in the declaration? You already knew that we would have to add names for the playpen &
(reference) and for the hue (value). I changed the other names because I prefer short names in a definition
context — not least because it prevents overly long statements. I use relatively long names in parameter lists in
declarations as documentation and so avoid cluttering my source code with comments. On the other hand,
long names often get in the way when you are trying to write implementations (the definition part). As you
already know what the parameters are for, you do not need those long descriptive names in otherwise very
short functions.

Back to that bug: the problem is that the above implementation of draw_horizontal_Tine() assumes
that-xl-is.smaller (to-thedeft).of x2-- Whathappens in the for-loop if x1 is already bigger than x2? It will
keep adding to x (which starts as the value of x1). Mathematically it will never get back to x2. In computer
arithmetic, because int has a limited range of values, it may eventually loop round and get to x2, but with
the range of values usually provided for int (much, much more than the minimum required range) that will

www.manara

probably take a long time (many seconds) even on a fast modern machine. If you want to try testing the
bugged version with:

draw_horizontal_line(paper, 10, 1, 0, red4);

You will probably need to start the program and then go and have lunch, because it takes a long time
even on a fast machine.

To remove this bug we need to learn about the if keyword. This allows us to choose what happens
next depending on a test that gives a true/false response. We only execute the (compound) statement
following an if(test) if the test comes out as true. We can add an else (another keyword) to state what
must be done if it is not true. The ability to make decisions is extremely important and so 1if-statements are
among the most powerful tools in C++ programming. All computer languages have something that serves
the same purpose and most call it “if”".

Here is a corrected implementation of draw_horizontal_line():

void draw_horizontal_line(playpen & pp, int y, int x1, int x2, hue c){
if(x1l < x2){
for(int x(x1); x != x2; ++x) pp.plot(x, y, C);

}
else{

for(int x(x1); x != x2; --x) pp.plot(x, y, C);
}

There are several equally sensible ways of achieving the objective, but they all share the same test
applied to x1 and x2. I hope you guessed that x1 < x2 reads as “‘x1 less than x2"’? That < is another C++
operator which is also used in mathematics. —— is the decrement operator (count down by one or reduce the
value stored in x by one) and behaves very like the ++, increment, operator.

If you are being very observant you may have noticed that the start point (x1, y) is plotted but the end
point (x2, y) is not. This is not an oversight. I meant it to be that way. If you look even more carefully you
may realize that if you try to draw a line from a point to itself, the result will be to do nothing, i.e. have a line
of zero length. It is too early in your programming career to have a long discussion of this issue. However it
is the kind of issue that those designing functions for use by others have to take very seriously. Often there is
no single right answer, only a best choice in context.

Please get into the habit of asking yourself what assumptions you are making when you write a piece of
code. It is easy to assume things when you write code and having sharp eyes and a quick mind to spot the
assumptions are among the qualities that make a good programmer. None of us are immune from making
assumptions. I will tell you about a couple I made when preparing code for this book, but not now.

it is more a piece of practical work to consolidate what you have learnt so far. It is also a task
with much more text than most.

Use the header and source code files that you created earlier (for draw_a_cross) for
the following work. Provide an implementation (i.e. a definition) of
draw_horizontal_11ine(). Type the definition given above into
drawing_lines_functions.cpp (after #include "drawing_functions.h" and the
using directive).

Use F5 to compile it. Correct any typos and continue until it compiles successfully.
One common cause of compilation errors is using commas instead of semicolons. | was tired

T ASK Most tasks in this hook require you to produce something new for yourself. This one doesn’t,

www.manara

when testing the above code and made exactly that mistake. The result was a couple of
dozen error messages for just a single typo. Whenever | ask you to type something in, it has
been directly cut and pasted from my copy of the file, so as long as the publishers do not
“correct” it you should be OK.

When you can compile this file, save it and close it. It should already be in the project
from when you were implementing draw_a_cross (). If you now press F9, your program
should build successfully and run to produce a Playpen window with a black cross and a red
line in it.

Please add this statement to main so that we test drawing a line from right to left:

draw_horizontal_1line(paper, 15, 20, -12, blue4);

Always write your test programs to try all variations, that way you will catch most
errors early when they are easy to correct.

There is nothing special about this test program so feel free to make up your own. But
make sure it tests lines that go right to left and ones that go left to right. You might find it
helpful to use a higger scale for that test so that you are certain that you can see the result.

When Roberta tried this task, | received an anguished email that said that although the
source file compiled, she was getting error messages when she tried to build and run it. |
could guess what she had missed. Can you?

She had missed my instruction to add drawing_functions.cpp to the project.

Try missing it out yourself (remove it from the project) so you can see the kind of error
messages that it produces. Hopefully that will help you identify similar mistakes when you
make them later.

We all make mistakes, lots of them. In fact, | think the better you are the more little
mistakes you make. The difference is that as you gain expertise you will correct such
mistakes with increasing ease. Part, but not all, of that is the result of becoming familiar
with the kind of mistakes you personally make. For many people the more mistakes they
make initially the more they learn to avoid them in the future.

One quick question: did you remember to add comments to all the files to identify
author and date? If not, go back and add them now and try to remember to develop good
habits right from the start. | won’t keep nagging you, but that does not mean | have forgotten,
just that | trust you to do the right thing.

the screen. Add the declaration to the existing draw_functions.h. You can add the
definition to draw_functions.cpp. Consistency in naming is important so choose an
obvious name for this second function.

Now rework all the above but with the changes needed to draw lines vertically up and down TA SK

Always test code early. That is why I tell you to get your files to compile successfully

before adding them to a project. Testing early and often will make life much easier because
when things do not work, you look first at what you have just added or changed.

Drawing Sets of Lines

Now you have got those two functions working and checked out, I will let you into a secret; they both
already exist as part of fgwlib.cr and are |declared in line_drawing.h. Well almost, but in order to avoid name
collisions I called‘mine horizontal_1ine(and vertical_line().

www.manara

The reason that these functions are part of my graphics library is that they have some added features
that I will reveal in a later chapter. However do not throw away your draw_functions.h and
draw_functions.cpp files, just remove the declarations of draw_horizontal_1ine() and
draw_vertical_line() (or whatever you called it) from the header file and their definitions from the
implementation file. You are about to replace them with something else.

You need some exercises to help you consolidate a little further on both for-loops and functions. The
following are not labeled as tasks because you can if you feel really happy with what you have done, skip
them. However I hope you won'’t because I think they will add to your programming skills.

EXER(;\SE Go back to the draw_functions.cpp file and look at the definition of draw_a_cross that
should still be there. Now remove those two for-loops and replace them with suitable calls
to horizontal_1line() and vertical_1l1ine(). You should now press F9 and get the
same result that you did before. What we have done is demonstrate one of the major
advantages of using functions: you can change an implementation of a function and link it
with already existing code. That means that if you discover a better way of doing something,
you only have to make the change in one place, the implementation of the function.

EXERC\SE There is another way that we could define a cross; we could give the point of intersection of
the horizontal and the vertical together with the lengths of each of the four ““arms’’. The
declaration of such a function would be:

void draw_another_cross(fgw: :playpen &,
int intersection_x, int intersection_y,
int left_arm, int right_arm,
int lower_arm, int upper_arm, fgw::hue);

Here is a test program for this function:

int main(){
playpen paper;
paper.scale(3);
draw_another_cross(paper, 5, 5, 10, 10, 20, 5, blue4 + red4);
paper.display(Q);
cout << "Press return to end";
cin.getQ;

Implement draw_another_cross and compile and execute this program so that you
test your implementation. (You should get a khaki cross with a long tail.)

www.manara

| want you to implement the following function declaration (put the declaration in EXERC’SE
drawing_functions.h and the definition in drawing functions.cpp) and then test it. If

you haven’t realized, when | ask you to test something | mean write a program that uses it

and tests that it works even when used in ways that you did not think about initially (like

drawing lines from right to left as well as from left to right).

void verticals(fgw::playpen &, int begin_x, int begin_y,
int end_y, int interval, int count, fgw::hue);

Let me make certain that you understand the problem. | want a function that will
produce a number (given by count) of vertical lines separated by the given interval. The
first line must start at (begin_x, begin_y) and end at (begin_x, end_y). Each
subsequent line should be an interval to the right of the previous one. For now you can
assume that you will not be given a negative count (we are not quite ready to deal with
impossible requests), but your solution should be able to handle a negative interval
(which should draw successive lines to the left instead of right).

If you think carefully you will find that you can recycle the mechanisms you used in
drawing a line and the functions that draw lines (or at least one of them). Good programming
builds on what has gone before both by reusing code and reusing ideas.

This one should be easy. Repeat Exercise 3 but develop a function called horizontals, EXERC’SE
which draws a column of horizontal lines from similar data.

Use the functions you have developed for Exercises 3 and 4 to write (and test) a function EXERC,SE
called square_gr-id that draws a grid of n-by-n squares on the screen.
This exercise has a little kicker in the tail. Unless you are abnormally insightful your
first almost successful attempt will, on close inspection, be missing a single pixel.
Remember how our line drawing for-loops stop when they reach the end without actually
plotting that end pixel? Now look at your solution to this exercise and add that final tiny piece
that completes it.
This is also a common programming experience where we have to deal with a
boundary case. As you gain experience you will get increasingly used to checking these tiny
details that make the difference between ‘‘almost right” and “‘perfect”.

www.manara

T ASK Aren’t you getting a bit irritated by having to add the source code that halts your program
until you press the return key? Remember that programmers do not like doing the same thing
again and again. That is what functions are for.

Create header and implementation files called utilities.h and utilities.cpp.
Remember to add the sentinel to the header file (UTILITIES_H in this case). Now put the
following declaration in the header file:

void pause();

Add the appropriate implementation to the implementation file.

Because you will want ready access to your utilities in future projects, put these files in
the fgw_headers directory. By doing that the compiler will be able to find your utilities.h
in the same place that it finds my playpen.h. You will need to include utilities.cpp into
any project where you use functions that are in it.

Creating Your Own Utility Functions

In future whenever you have a convenience function that avoids continually rewriting the same code, add it
to your utilities files. I may sometimes make suggestions as to things worth putting in your utilities files, but
do not wait for me; if you want a function you have written to be generally available put it in these files.
Eventually you will want to provide specialized files with descriptive names for functions that are more

than utilities.

Let me finish with a little added motivation for doing this kind of thing. Imagine that you wanted to
give your prize program to a French friend. You can convert that message to French just by writing a French
implementation of your utilities. Now all the places where your programs use that mechanism to wait before
going on can, almost cost free, do it in French.

This raises an issue that often confuses newcomers, programming in foreign languages. The keywords
of C++ are based on English. The names of the hundreds of things in the C4+ Standard Library are all
derived from English. This effectively means that source code is written in an English-like form. If you are
not a native English speaker that may seem unfair, but the alternatives are just too much for the computer
industry. Professional source code is almost always written using words and names based on English.
However this is not an excuse for making the users of programs use English. You should think of ways to
make it easy for your programs to work in other languages; not now but eventually if you have an ambition
to become a professional programmer.

For fun

What about going back to your modern art program and adding some more features now that you know
how to draw lines? You can also write some more functions to draw other simple shapes composed of
vertical and horizontal lines. If you want to extend a bit further you could write a function to draw a line at
45°. Other slopes will be more challenging but try some as a way to improve your programming fluency.

The more you experiment the better you will come to understand what you are doing and the more
fluent your programming will become. Watch young children learning to move about, they do not imitate
adults but work out ways to achieve their goals, even if their resources are limited. They do not wait to be
taught, they learn by experiment.

www.manara

ROBERTA’'S COMMENTS

In the early chapters of the book I was struggling to learn and remember all the new terminology as well as how things work.
As you will discover I didn’t quite grasp everything about functions to begin with. I was happy about the difference between
declaration and definition and which files they went in but I now realize I hadn’t fully understood how to use or call a function
and I wasn’t too certain about return types either if I am honest. I did things but didn’t understand them till later. Even if I
thought I understood I sometimes didn’t and it is only in retrospect I can see this. I seem to be about three chapters behind in
comprehension most of the time. Why am I saying this? Because I can promise you that if you are finding this difficult you will
understand it eventually.

At first I didn’t think Task 5 was worth doing because it is only two lines of code which only seemed to be used at the
end of main() when using p1aypen. However, I later discovered that this tiny bit of code can be used to pause a program at
any point and is useful when testing more complicated code.

Incidentally, I thought you might like to know that cout and cin are pronounced cee out and cee in and not coot
and sin as I originally thought.

SOLUTIONS TO EXERCISES

These are just my answers. If yours are different but produce the same output just study mine and
consider whether they show you anything you missed. Of course my code may just give you a warm
fuzzy feeling that you have done well.

Exercise 1

void draw_a_cross(playpen & paper,
int left_x, int left_y, int width,
int bottom_x, int bottom_y, int height, hue shade){
horizontal_line(paper, left_y, left_x, left_x+width, shade);
vertical_line(paper, bottom_x, bottom_y,
bottom_y+height, shade);
}

Exercise 2

void draw_another_cross(playpen & paper, int x, int vy,
int left, int right, int down, int up, hue shade){
draw_a_cross(paper, x-left, y, Teft+right+1,
X, y-down, down+up+l, shade);

I have recycled the earlier draw_a_cross function to do the actual work. This process is called
delegation, which is yet another way to avoid repetition. If you are curious about the +1s remember
that we have to allow for the “size”” of the intersection ““point’.

Exercise 3

void verticals(playpen & paper, int begin_x, int from,
int to, int interval, [int count, hue shade){

www.manara

ENDNOTES

SOLUTIONS TO EXERCISES

for(int 1ine(0); Tine != count; ++1ine){
vertical_line(paper, begin_x + Tine * interval, from, to,
shade);

}

}

Exercise 4

void horizontals(playpen & paper, int begin_y, int from,
int to, int interval, int count, hue shade){

for(int 1ine(0); Tine != count; ++1line){
horizontal_line(paper, begin_y + line * interval, from, to,
shade);
}

}
Exercise 5

void square_grid(playpen & paper, int begin_x, int begin_y,
int interval, int count, hue
shade) {
verticals(paper, begin_x, begin_y,
begin_y + interval*count, interval, count+l, shade);
horizontals(paper, begin_y, begin_x,
begin_x + interval*count, interval, count+l, shade);
paper.plot(begin_x + interval*count, begin_y + interval*count,
shade);

Notice the count+1 in the calls to verticals and horizontals. That is because count is the
number of squares across and up, not the number of lines.

Remember when you test these functions that you will need to use the display() function of
fgw: :playpen if you are to see the result.

summary

Key programming concepts

» Programming languages provide a way of encapsulating an action that may be used more than once.
This is often provided by something called a function.

www.manara

» Functions are provided with specific data when they are used, via arguments passed to a matching
parameter list.

» Functions return a value of some specified type.

» There is a mechanism for making decisions in a program. Commonly this is provided by some
variation of i f and else.

C++ checklist

» C++ has a mechanism for making decisions using two keywords: if and else.

» 1if and else are followed by either a simple or a compound statement. else is optional, if you leave
it out nothing is done if the test fails.

» C++ functions return values and if there is nothing to return we use a special return type
called void.

» A function will have a (possibly empty) list of data types that it expects to be provided when the
function is called (used).

» Functions are declared in header files and defined in implementation files.

» Function declarations specify what is needed to use a function. This information is valuable to
programmers as well as being essential for compilers.

» Function definitions provide the information that can be compiled to produce object code that can
be linked in to provide a complete program.

» Definitions are provided by library files (.a files with this compiler) or by source code files — usually
identified by a .cpp extension. You need to tell the linker about them by including them in the
project. The C++ Standard Library is an exception to this rule; the linker already knows where to
find that.

» When you call a function you must provide a list of data (called arguments) to satisfy the parameter
list specified in the function’s declaration.

» There are two major kinds of parameter. Value parameters, which use copies of the data, and
reference parameters, which have access to the original object.

» If the parameter type ends with &, it is a reference parameter.

» A variable or parameter that is declared as const is one whose value is fixed by the definition or call
and cannot subsequently be changed.

Extensions checklist

» There are two functions provided in the graphics library that allow you to draw lines straight across
and straight up the screen. Their declarations are:

void horizontal_line(playpen &, int y_value, int from_x, int

to_x, hue);
void vertical_Tline(playpen &, int x_value, int from_y, int
to_y, hue);

» Theline_drawing.h header file provides the declarations of the various line drawing functions
provided by my library.

www.manara

www.manara

CHAPTER @

You Can Communicate

In this chapter I will be covering various aspects of programming that can be loosely placed under the
heading of communication. Good use of names and the C++ namespace facility makes source code more
readable. Getting information into and out of a program is important and you need to learn more about the
C++ streams mechanism for doing those things effectively. Finally you need to know a little about how a
program can communicate internally when it meets unexpected problems such as a disk being full, or being
given unuseable data. On the way I will introduce you to a couple more of the types provided by C++.

Names and Namespaces

In Alice Through the Looking Glass (chapter 8) there is a dialog between Alice and the White Knight about how
important it is to distinguish between something and its name and what a name is called and so on. Of
course Charles Dodgson (Lewis Carroll’s real name) was a Victorian mathematician who was very familiar
with the importance of names. If you haven'’t ever read the Alice books http://www.alice-in-
wonderland.net/ is an excellent place to start.

Our ancestors believed (at least some of them did) that knowing something’s name gave you power
over it. They were right. In a purely practical sense knowing a person’s name gives you the ability to attract
their attention, ask about them or tell other people about them. Knowing what something is called makes it
much easier to find out more about it on the Internet or ask a shopkeeper if they have it in stock. If T had not
known the name of the book in which Charles Dodgson had written an amusing and informative dialog
about names it would have been hard for me to have found the reference I wanted and even harder for me to
have told you about it.

Giving names to things is an important human ability. We use many kinds of names but for now the
most important are names for groups of things (e.g. “dog’’) with shared properties and names for individual
objects (e.g. “Fido’"). We classify things in various ways but in programming we tend to be more rigid. We
attach names to individual objects though one object can have several names; we reuse names in different
contexts; and we apply names to groups with shared characteristics. A name like “dog’’ in most contexts
refers to a kind of animal, not an individual animal but to all animals that share certain biological properties.

On the other hand, “‘Francis”’, “Roberta’” and “‘Fido’” would normally be individuals. However many
individuals share my first name so context becomes important. In the context of this book, Francis is me, the
lead author, Roberta is the student author and Fido is my sister’s dog.

C++uses-names torefer toindividual objects and names for groups of objects that share general
behavior. The latter use of a name is called a type name. C++ also provides named contexts called
namespaces. Throughout this book I use two particular named contexts (namespaces): std and fgw. std is
the context inwhich the C+-4Standard Library provides names; fgw is the context of my library.

www.manara

There is also the widest context of all: global. The global context is for names that are declared neither
in a namespace nor in a local context, such as a compound statement (a collection of statements contained in
braces). An understanding of context (called scope in programming) for a declaration of a name is
important; names in different scopes may look the same but have different meanings, just as “‘Francis’ will
refer to different people depending on where you are and who you are talking to.

There are various other contexts available in C++4 and you will learn about some of them in the later
chapters of this book.

A variable is an important kind of name. A variable is a name that is used to refer to an object. An
object is a region of storage (RAM) with associated behavior. For example a playpen object is a large region
of storage (over a quarter of a megabyte) that has such associated behavior as being able to display itself in
the Playpen window. A type is the combination of storage and behavior; and an object is a specific region of
storage used as an instance of a type. Think about the difference between the dog idea (a type) and Fido
(an object).

The definition of a variable associates a name with an object. Normally the definition causes the object
to be created in some way. However it is possible to associate a name with an already existing object; that is
what a reference is (a new name for an existing object). Defining a non-reference variable, parameter or
return type means that a new object will be created for the variable, the argument or the return value.
Defining a reference variable (we won'’t be using those much, if at all, in this book), a reference parameter or
a reference return means that we are attaching that name to an existing object.

In Chapter 5 we will use objects in contexts where it matters a great deal whether we use an existing
object through a reference parameter or a new object through a value (non-reference) parameter. At that
point I will give you an example to try.

We use names for types: fundamental types (which are an inherent part of the C44- language) and
user-defined types (either from the C++ Standard Library or from my library); we use names for variables
and parameters that refer to objects, either newly created ones or existing ones; and we use names for
functions. We also use names to refer to namespaces (i.e. named contexts for other names). From this you
should appreciate how important names are to programming.

Choosing good names will make your code easier to understand. Bad ones may be easier to type but
will make your code harder to understand when you return to it.

Return values are examples of unnamed objects, whether specially created to return information from
the function or existing objects that can return the information.

Interaction

So far our programs have used little interaction with the user. We have used cout (or, to give it its full name,
std: :cout) to display simple messages (e.g. “Press RETURN’’) and values in the console window of a
program. We have used cin.get() to obtain the response. The time has come for our programs to have
greater interaction with the outside world, including the program user (i.e. the person who interacts with an
executable as opposed to the programmer using someone else’s source code).

There is a lot of new information in this chapter (it is also a very long chapter, but do not let that put
you off, just take it steadily). You do not need to completely understand it in order to use it. One of the
advantages of having a book is that you can always return to earlier material and read it again. As you gain
experience, each successive reading will deepen your understanding. At each stage, all that is essential is
enough understanding to write successful programs.

If you feel that you are getting in too deep, ask for help. These days there is no need to try to learn in
complete isolation. Even if you do not have a learning partner or a mentor, the ACCU mentoring scheme
(thoughyou.do.have to,be.aanember;anembership is less than the cost of a book) and mailing lists will
willingly help you. Remember that you should try to supplement a book such as this one with other
resources. You can learn to program from this book alone but you can make it easier for yourself
without cheating.

www.manara

The char and int Types

It is time to add a bit more detail about the int type that we have used to control loops and for a little
arithmetic. You will also need to learn about the fundamental type used for handling symbols in C++-. It is
called char (variously pronounced as “car’’, “‘care’ or the first syllable of charcoal).

Dealing with characters

C++ has four types that handle characters but we only need the one called char for now. Like int, char is a
fundamental type and its name is a C++ keyword. The language guarantees that the range of values that can
be stored in a char variable can represent the characters in the system’s execution character set. That is
mostly the symbols that you can type on your keyboard (though not all of them). A few have to have special
names when used in source code because typing them has a direct effect. For example typing \n provides the
char value that represents the effect of the Return or Enter key.

Because the backslash character is used to identify these special characters, we need a way to use the
backslash as a character in its own right. If you want an actual backslash (for example as part of a directory
path) in text that is within quotation marks you have to double it up. For example, if you write the following
in your source code:

std::cout << "to go to a new line type \n in your code."

the output would be:

To go to a new line type
in your code.

To get the result you probably wanted, you need to write:

std::cout << "to go to a new line type \\n in your code."

When we want to specify a character literal we place the symbol inside single quotes. So 'a' provides
the value that represents the lowercase letter a on your computer. Likewise '9"' provides the value that
represents the symbol 9 as opposed to the numerical value 9 and "\n' provides the value that represents the
effect of pressing the Enter or Return key.

Be careful of quotes when programming. 'a' and "a" are not the same thing. The first is a character
literal (i.e. an explicit char value), the second represents a string literal that happens to be composed of a
single character. The compiler can tell the difference and will often handle them differently.

Look at the following code fragment:

cout << "press a key and then press RETURN";

if(cin.get() = 'a')
cout << "that was an a.";
else

cout << "that was not an a.";

The first statement prompts for input. Next we check by comparing (note the double equals sign which
reads as ‘‘compares equal to’") the input with 'a' and printing one of two messages in accordance with
the result.

not use graphics you will not need to include playpen.h in it but you will need to include
<iostream>. Again, as there are no graphics, the project will not need to include the two
library files — fgwlib.a and libgdi32.a.

Write and test a program that checks the various claims | made above. As this program does TA SK

www.manara

Using the int type

In Chapters 1 and 2 we used the int type without knowing very much about it. It is now time that I filled in
a bit more because you will need to start using it on your own initiative when tackling some of the exercises
in this chapter.

When I create a variable of type int the compiler will allocate a small amount of memory (the storage
part of a type), sufficient to store a single whole number from a range. C++ guarantees that that range for an
int will be at least from —32767 to 432767 inclusive. Most systems provide for a much greater range, but
the important thing is that you can be certain that you will not get strange results as long as your program
keeps within the guaranteed range.

All the common programming languages have the concept of an int type and most call it by that name.
C++ provides a wide range of operators that can be applied to int values (whether given explicitly, such as
17, or stored in an int object). As we saw in Chapter 3, these include the common arithmetic operators 4+,
—, * (multiply) and / (divide).

Assuming that i and j have been defined as int variables (and so refer to int storage or objects), here
are a few examples of arithmetic expressions using int values and variables:

i+ 3 i+ 3

i* 3+ 3 i* 34+
G+3)/7 i+3J /7
8/ 4/ 2 8/ 4/ 2
10 - 6 - 3 10 - (6 - 3)

Computer arithmetic follows the same rules that you learnt at school; work out the value of expressions
in parentheses first, do multiplications and divisions (working from left to right) before additions and
subtractions (working from left to right). Notice how these rules affect the results you get for the last four
examples. 8 / 4 / 2 (divide eight by four and then divide the result by two) gives 1 but 8 / (4 / 2) comes to
4 (i.e. eight divided by the result of dividing four by two). Ten subtract six subtract three is one; ten subtract
the result of six subtract three is seven.

There are also a number of operators that can only be applied to int variables (such as i above) and
not to int values (such as 7 or 10). The most obvious of these is assignment (=). In computer
programming, assignment means that we must first work out the value of the expression on the right of the
“=""sign and then store it in the memory provided for the variable on the left. That storage process will
over-write what was previously being stored in that memory. One consequence of that rule is that the left
side of an assignment must provide memory to store the result. So when I write:

the value stored in the memory belonging to i will be obtained (the 7 we just put there) and 5 added to it;
the result will be placed in (the memory provided for) j. I put that phrase in parentheses because we
normally do not spell out that level of detail and would simply say that ““five is added to the value of i and
stored in j”’. Indeed programmers usually abbreviate that further and say ““five is added to i and stored in "
or even “‘j equals i + five”’. They take it for granted that you will know from the context that it is the value
found in 1 that is used and the memory provided for j that is changed.

The process-of assignhmentis.quite.different from the process of initializing an object when a variable is
defined. Some types provide default initialization (e.g. a playpen object starts with a white screen unless you
explicitly specify otherwise). The fundamental types such as int and char are left in some random state
(called “‘uninitialized[") if no starting value is provided by the definition. In this book the initial values for

www.manara

objects are always provided by placing them in parentheses after the variable name being defined. If you are
not providing initial data for an object there must be no parentheses after the variable name. For example:

fgw: :playpen paper; // defines a white playpen object
fgw: :playpen canvas(black); // defines a black playpen object
fgw: :playpen foo(Q); // declares foo as a function

Note that in the last case, empty parentheses after a name in a declaration means that you are declaring
a function that has no parameters.

In C++ there are other ways of changing the value being stored. In the previous chapter we used the
increment and decrement operators while managing our for-loops. Both of those operators change the value
stored (and so can only be applied to a variable). There is nothing special about the way we used an int
variable to control a for-loop. We were just using part of the normal behavior of an int.

The compiler will pick you up if you try to use an operator that will not work with a pure value. For
example, if you write 7 = i or ++10 the compiler will issue an error message because you cannot change 7
to something else, nor can you increment 10. We call such pure values (ones that are not stored in memory
belonging to a variable) literals. As I hope you would expect, literals are immutable (cannot be changed by
the program).

An int variable coupled with either an increment (++) or a decrement (--) operator is useful when we
want to count up or down. Typically we will see code like this:

int count(0);
// do something
if(test) ++count;

Where test is replaced by some expression that evaluates to true or false. I would usually choose a
more descriptive name for count, one that would tell the reader of the code what was being counted.

Streams

The concept of input and output to a program is encapsulated in C++ (as well as in many other languages)
by the idea of a stream of data. We can export information from our program through any available output
stream and we can input data from any available input stream. C++4- separates the process into two parts (the
structuring/formatting of data and the process of transferring it) for the benefit of experienced
programmers, but C++ I/O has been carefully designed so that we do not need to learn about the hairy
details when all we want to do is to stream ordinary data into and out of our program.

Some kinds of stream are essentially one-directional. For example a keyboard can only supply data
(technically, it is a source) and an ordinary monitor can only display data (it is a sink). Some kinds of stream
are naturally two-way. A file is the most common example of a stream that can be connected to input, output
or both. A parallel port on a standard PC is normally bi-directional: the printer can talk to your computer to
pass back information such as being out of ink or paper.

I/0 in C++ has been carefully designed to make the actual data source or data destination largely
irrelevant to the source code. Of course it is very relevant to the way in which a program can be used. In the
following I will introduce you to three common types of stream: console streams, file streams and, briefly,
string streams.

console streams

Whenever you include the header <iostream> in a program, you will automatically be supplied with the
some standard console stream objects. The four most frequently used ones break into two pairs and deal with
char representations of values (see above).

www.manara

The first pair, cout and cin, provides normal communication between your program, a standard
output device (usually a monitor) and a standard input device (usually a keyboard). The second pair, cerr
and clog, provides error and logging facilities. Initially both the latter use the same device as cout. I will
ignore the difference between these output objects until we have a need to know more about them. It is
enough for now that you know they exist and can be used in exactly the same way that cout can be used.

cout is relatively easy to use because you have complete control over what you send to it. In addition
to the << operator that we have already used, it has access to the many member functions (functions that are
specific to a type and are called with the object-dot-function syntax) of output streams. cout is an object
(strictly speaking it is a variable referencing an object; we tend to elide some of the words when talking
about objects and variables — a variable is a name and an object is the thing the name refers to), so it is fair to
ask what type it is. The answer is that it is an ostream object and so shares all the behavior of the ostream
type. We will mainly use the << operator to send data out to the screen.

cin is more problematic because it is collecting data from outside the program. We have no control
over the supplier of that information. Worse, the supplier is usually a fallible human being who, even when
not taking a perverse delight in trying to break our programs, will make mistakes.

There is an >> operator for istream objects (I hope that you are not surprised to learn that that is the
type of cin) that shifts data from the input source to your program, but it is very fragile and easily stops
working. I could hide this fragility from you but, as you will have to deal with it sometime, I think honesty is
a better policy.

Here is a small code snippet (i.e. it is not even a whole function, just three lines that might be written
as part of your source code) that illustrates the problem:

cout << "Please type in a number between 0 and 10: ";
int 1(0);
cin >> 1i;

There are several weaknesses in that source code. The instruction lacks precision because it does not
specify if 0 and 10 are considered valid responses. It also does not specify whether only whole numbers will
do. That lack of precision makes it harder for the program user to give a correct response.

However there is a much more serious problem with this code: it assumes that the user of the program
in which it occurs will respond with a valid whole number to store in our int variable. C4+ has very rigid
ideas as to what constitutes a valid whole number. It may optionally start with a 4+ or — sign, but the rest
must use only the digits 0 to 9. Nothing else will do. For example it is no use typing in “‘five’’; any human
being will understand that means 5 but the program will not.

As soon as cin has found the start of the input (it skips over spaces, tabs, newlines, etc. when searching
for the start of the input for a number) it extracts characters from the input until it finds an invalid character
(anything other than the ten digits or an initial 4 or —). If it has not read any digits at that stage (i.e. the first
character that is not some kind of space is not a digit or 4+ or — followed by a digit) it puts itself into a fail
state and refuses to process any further input until the program deals with the failure. Subsequent attempts to
use cin in your program will do nothing until it is restored to its normal state.

Your first instinct is likely to be to consider such behavior to be a mistake by the designers of the C4++
Standard Library. I think that experience will show that any other behavior would have been worse. However
we must understand the behavior and learn to cope with it.

Now [am going to give you a piece of advice that will put you ahead of a very substantial part of the
C++ programming community: do not use the >> operator on cin unless you immediately check for failure
and handle it.

File streams

There are three types of stream used to handle files: ifstream, ofstream and fstream. The first two are
similar to istream and ostream types except that they are designed to work with files as the source or
destination for'data. The third type, fstream, takes advantage of the fact that a file, in general, can be both

www.manara

read from and written to. You will not be making much, if any, use of that bi-directional type because there
are too many complications that arise when we try to mix reading and writing to the same file.

You will find, once you learn how to create your own file stream objects, that using them is simple.
They have all the functions and operators that apply to the istream and ostream objects plus a few extras to
support specific file behavior (such as opening and closing the files they are using). In programming terms,
the file stream types are special types of the I/O stream types (istream and ostream) and can be used
wherever those types can be used. Be careful! If I need, for example, an istream object, an ifstream one
will do but not vice versa. In other words, all input file streams are input streams but not all input streams
come from files.

String streams

These suffer from a redesign problem. Through much of the 90s, C4++ programmers used strstream
objects. For now, just note that such things exist and they are not the same as the modern
stringstream objects.
stringstreams use string objects (stringis a type that can store a sequence of characters; more about
it shortly) as the source and destination for data. Just like files, they come in three flavors, istringstream,
ostringstream and stringstream. The three versions are exactly analogous to the three types of file stream.
We will be using string stream objects (of all three types) quite extensively in later chapters.

The string Type

Just as C++ has types to manage numerical data (int is the only one we have used so far), it has types that
manage text data or sequences of symbols. The only one we need in this book is string (or, std: :string to
give it its full name).

string provides the resources and behavior to store and manipulate text (sequences of char objects).
Like many other things we will learn about, it has many member functions that provide useful behavior. It
even has some operators, e.g. + is used to join two string objects together to create a new one.

I think it is time that you had some practical work to help you digest all this new information.

Creating a Simple Dialog

Let us look at preparing a program to hold a simple dialog with the user. This will allow us to use several of
the items above and improve your understanding of how I/O works.

#include <iostream>
#include <string>

using namespace std;

int mainQ{
cout << "Please type in your full name: ";
string fullname;
getline(cin, fullname);
cout << "Hello " << fullname << ", I am pleased to meet you.\n";
cout << "\nPress RETURN to end.";
cin.get(Q);
}

First get the program working and then I will go through it with you.
You will need to create a project in Quincy. By now you should be getting familiar with this process so
I'will not mention it again. This time you need to create a blank project in the Chapter 4 sub-directory. You

www.manara

do not need to insert either of the special library files (libgdi32.a and fgwlib.a) because we are not using any
graphical resources. The linker will be using some of the Standard Library, but it knows where to find that.

Now create a new C++ source file and type in the above program. As always, be careful about typos;
the code above works as is, if yours does not you have missed some small detail. You can use the pause()
function from your own utilities files if you wish. If you do, you will have to include your utilities.h in this
program and add your utilities.cpp to the project.

When the source code compiles successfully, add it to the project and press F9 to link and run it. You
should get a console window and a simple dialog with which you can interact. Now let us look at what you
have done so far.

The #include statements make two parts of the C++ Standard Library available for use. The header
names are placed between angle brackets ({ and)) to tell the compiler that we are using standard headers
rather than ones that have been written as extras.

The third statement (the using directive) is one that leads to interminable arguments between
programmers. The reason for the argument is that it makes all the names in the Standard Library useable
without prefixing them with std: :. You should never place a using directive in a header file; doing so would
cause problems to programmers who include that header file into files of their own. As .cpp files are only
included into projects and not directly into other files we have more freedom of choice for those. Within
.cpp files (which Quincy provides when we create a new C++- source file) it is up to us to choose whether
we use elaborated names (those that specify the context in which they are declared) or simple names. The
using directive in this program allows us to use simple names (i.e. without the namespace qualifier) for
things from the C44 Standard Library (cout instead of std: : cout, string instead of std: :string, etc.)
that are declared in the header files we have included.

int mainQ{

We already know about that statement: it defines the starting point for a program and is followed by a
block of statements whose execution makes our program.

cout << "Please type in your full name: ";

This statement prompts the user for some input.

string fullname;

This statement defines fullname as a variable referring to an object of type (std::)string. Itis a
declaration because the statement starts with the name of a type. It is also a definition because the default
behavior of C++- is to create objects when variables are declared within a function.

getline(cin, fullname);

getline() is a free (non-member) function that has two reference parameters (i.e. it uses existing
objects). In this case we are telling std::getline() to use std::cin to get data into fullname.

cout << "Hello << fullname << ", I am pleased to meet you.\n";

Notice that we can use << to chain together data that we want to send to an output stream. In this case
we sent two pieces of literal text and the contents of the string object referred to by fullname. The final \n
is the char code that tells the compiler that we will want to go to the start of a new line after the rest has
been done.

cout << "\nPress RETURN to end.";
cin.get(Q);

www.manara

You do not actually need those statements in programs that do not use a playpen object because they
were only there to prevent the Playpen being closed before you were ready. This program uses the console
window and Quincy will keep that open until you have finished.

ROBERTA

If you do not need them why did you put them in?

FRANCIS

It is a bit difficult to highlight that something is not needed unless it is there to start with. We have always needed them previously so I
followed previous practice and then commented that this was a place where it was not needed.

So now we can send data to the screen and we can read a whole line (up to the next Return key) of
input from the keyboard and store it in a string object. We can use the resources provided by the console
1/0 to decide when we have finished with the program.

Next we are going to see how we can get some names, sort them and then write them out to the screen
in alphabetical order. To do that, we need something to contain the names.

Sequence containers

The idea of a container is fairly straightforward. In everyday life we have tins of plums, packets of sugar
lumps, shopping lists, dictionaries and so on. In computing terms there are two distinct types of container:
sequence containers and associative containers. We will leave the latter until another time and focus on

the former.

C++ containers are always restricted to a single type of content. We cannot have tins of mixed fruit,
only tins of plums, of cherries, of peas, etc. Eventually we will come to understand both what that restriction
means and how we can get round it. For now we will focus on a sequence container called std: :string and
a mechanism to create specialized containers, std: :vector.

The defining property of a sequence in programming is that its members are in some, possibly
arbitrary, order that can be rearranged. A shopping list is a sequence container because there is no single
correct order for the items in it. A dictionary is not; one of the properties of a dictionary is the order of the
words (it isn’t a dictionary if the words are in an arbitrary order).

Because a std: :string is a sequence container of char objects (the special type used for
characters — symbols — in C4+4) we can rearrange the contents if we want to, there is no special correct order
for the chars that make up a std: :string. Of course if you jumble up the letters of a word or message the
result is likely to be meaningless text, but it is fine as a sequence of chars. For now it will be enough to
remember that a std: :string is a sequence of chars.

Next let us turn to std: :vector. This is a much more interesting kind of sequence container because
of its versatility. std: :vector has a lot of built-in behavior provided by operators and member functions.
The C++ Standard Library also supplies a lot of behavior for sequences by way of various free functions that
are declared in the <algorithm> header.

An important characteristic of std: :vector is that it is only half of a type: we need to say what we are
going to store in it to make it a full type. We can have a std::vector<std: :string> (to collect
std: :string values) or std: :vector<int> (to collect int values). There is one requirement for the type
that-.completes.a-std:vectoriitsobjectsmust be copyable. That means that we must be able to create new
objects as copies of existing objects. Some types inherently cannot be copied (in real life, people cannot be
copied and copying a credit card is almost certainly fraud, but there is no problem with giving someone your
phone number)*I will fill in details of std:: vector as we need them.

www.manara

Creating an alphabetical list of names

The problem we are going to tackle is to write a program that will collect some names, sort them into
alphabetical order and then display the result on the screen. We will finally save the result in a file.

If we are going to collect some names we need an object (a suitable container) to keep them in until we
are ready to use them. A std: :vector<std: :string> is a suitable type of object. That <std: :string> bit
tells the compiler what type of std: :vector container we want: one for storing std: : string objects. Notice
that the combination of std: :vector and <std: : string> creates a type, no different in essence to playpen,
istream, int or any other type. We will need an actual object of that type, so we will need to declare one:

std::vector<std::string> names;

The next thing we need to know is how to get data into the container. We will focus on a single
mechanism for now, a member function (i.e. one that uses the object-dot-function syntax) called push_back
which is used to copy an item into a std: :vector object. Please note my use of the word “copy’’; C++
containers work with copies. If you need to use originals, you would need to add another layer of
complexity (called “indirection’).

Time, I think, for a program. Create a new project in the Chapter 4 sub-directory. Now create a new
C++ source file and type in the following:

#include <algorithm>
#include <iostream>
#include <string>
#include <vector>

using namespace std;

int mainQ{

string const endinput("END");

cout << "type '" << endinput <<

vector<string> names;

for(int finished(0); finished != 1;){
cout << "type in the next name: ";
string name;
getline(cin, name);

when there are no more names.\n\n";

if(endinput = name)
finished = 1;
else
names.push_back(name);
}
sort(names.begin(), names.end());
for(int i(0); i !'= names.size(); ++i){
cout << names[i] << '"\n';
}

Get this'.code working and thenmwewill have a look at it.

www.manara

Walkthrough

I think that most of the included headers are self-evident; the one that might not be is <algorithm>. That
one declares some free functions from the C++- Standard Library that work with containers. In this case we
want to be able to use the sort() function so we need to include the algorithm header so that the compiler
will recognize sort when we use it.

The next feature of the code is that string const endinput. When we add const to a type we are
telling the compiler that the variable we are declaring cannot be used to change its corresponding object.
That allows the compiler to take some short cuts. It also makes the compiler check that we do not try to
change the object. I need a fixed string object that we can compare with each input to name to see if we
have finished with input.

In this particular instance I am simply creating a name for a string literal so that my code will be more
intelligible. This is similar to using names for numbers to identify their meaning (e.g. such things as red4,
turquoise, etc., used with playpen). I am avoiding magic values.

Now look at the for-loop. Remember that I mentioned that one or more of the parts of a for-loop
could be blank? This is an example. I do not want to change finished from zero until I detect that I have
finished inputting names. The second part of the mechanism is found in the if-else inside the controlled
block of statements. If the program determines that the user has just typed END, it changes the value of
finished to 1 which will be detected the next time that the condition part of the for-loop is executed.

It is usually considered poor programming to change a loop control variable inside the controlled
statement/block of a for-loop. However, if the third expression of the for-statement is empty — as it is
here — you know that you must check the controlled statement/block to see how the loop will end. In a later
chapter you will learn about an alternative looping construct in C++- that is generally better for loops that
end for reasons other than finishing a count. You will also learn of a better type (boo1) that can be used
where we simply want a choice between true and false.

Until the user types in END, the push_back behavior of std: : vector is used to copy the current text
in name to the back of the sequence called names. Eventually the user finishes typing in names and types in
END. (We are trusting our user to get that right, if we were writing a serious program to be used
unsupervised we would have to add a lot more polish.)

ROBERTA

Are you going to tell us how to add that polish later on?

FRANCIS

Not really. It is hard tedious work trying to anticipate all the stupid things naive users do. Even highly experienced professional
programmers miss things with the result that programs fail in surprising ways. We just have to recognize there is a problem and reduce it
as far as possible as we go along.

Next we want to sort the collection of names. This is a place where the raw power of C++ shows
through. All we need to do to sort a std: :vector<string> into alphabetical order is to call the std::sort
function with the data that states where to begin and where to end. What makes this simple is that every
C++ Standard Library container type includes two member functions: begin() and end(). Later we will
find that these return things are called “‘iterators’’, but we do not have to know about iterators or understand
them in order to use them. If we want to sort an entire container we just call std: :sort() and give it
beginrandsend-forthescontainer;;E++ will do all the rest.

www.manara

We use two other features of std: :vector. Every container knows how many items it contains and
returns that value via its size() member function. std: :vector supports subscripting (sometimes called
indexing), as does std: :string. The index starts from 0 so the first item in names is names[0], the next is
names[1] and when we get to names.size() we have finished (think about the way we drew lines, which
are basically containers of pixels). The last entry in names is names[names.size() - 1].

Does that program make sense now? I hope so, even if it took you a while to piece it all together. I also
hope you were not waiting for me to tell you to experiment with the program. I hope you were impatient to
try it out. I hope you also tried it to see what happened if you did not type in any names but straightaway
typed in END. Yes, std: :sort works for empty containers, just as our line drawing function worked for zero
length lines.

Now for a quick demonstration that a string is a sequence container (of char) and behaves very like a
std: :vector. Try this program:

#include <algorithm>
#include <iostream>
#include <string>

using namespace std;

int main(){
cout << "type in a sentence: ";
string sentence;
getline(cin, sentence);
sort(sentence.begin(), sentence.end());
for(int 1(0); i != sentence.size(); ++i){

cout << sentence[i];

}

cout << "\n\n";

It might not do exactly what you want because it places uppercase letters before lowercase ones. But
this should demonstrate how C++ is designed for consistency of concept. There are places where that breaks
down, but there are a surprising number of places where we can apply something we have learnt in one
context to a different one.

Using files

I said when I outlined the problem at the beginning of this section that we would write the sorted names to a
file. Perhaps others have suggested that this will be difficult; some people try to make easy things seem hard.
In order to write the names to a file we need to do several simple things. First we need to warn the
compiler we will be streaming data to or from a file by including the <fstream> header. Next we need to
create an ofstream object and connect it to the file we want to write to. Then we stream the data to the
ofstream object (no different to streaming the data to cout).
Here is the amended earlier program with the additions in bold type face:

#include <algorithm>

#include <fstream>
#include <iostream>

www.manara

#include <string>
#include <vector>

using namespace std;

int main(QQ{
vector<string> names;
string const endinput("END");

cout << "type " << endinput << " when there are no more names. \n\n";
for(int finished(0); finished != 1;){
cout << "type in the next name: ";
string fullname;
getline(cin, fullname);
if(endinput = fullname) finished = 1;
else names.push_back(fullname);
}
sort(names.begin(), names.end());
ofstream outfile("names.txt");
for(int i(0); i != names.size(); ++i){
cout << names[i] << "\n';
outfile << names[i] << '\n';

Three extra lines, though we might add a fourth — outfile.close(); —if we want to close the file
explicitly, however C++4 provides automatic closure of files when a program ends. (Did you notice that I
included the standard header files in alphabetical order? That is a good habit which I hope you will follow.)

After you have compiled and run this program you can look at the result by opening names.txt in
Quincy (you will need to make Quincy list all the files in the Chapter 4 directory to see it — my thanks to Al
Stevens, the author of Quincy, for modifying Quincy to make this work).

Those of you who have been thinking carefully about what I wrote earlier about making assumptions
will have noticed that the above program assumes that outfile will manage to open a file called names.txt.
What would happen if it fails (for example because such a file already exists but is marked by the operating
system as read only)? The answer is that outfile will go into a fail state. That means that attempts to use it
will do nothing. In the context of this program, that is safe: the worst that can happen is that I lose my data if
it fails. In other circumstances, it could be serious and I will show you how to handle that problem later.

That is enough theory for now. It is time that you did some more practical work so here are a few
program exercises for you to try.

Use your text editor to write a file of names, one per line. (Use Quincy to do this by creating a EXERC’SE
new ASCII text file — it is at the bottom of the list of new file types.) Make the last entry END
and do not forget to complete that last line by pressing Return. Please do not use a word
processor for this because they add all kinds of formatting information that will confuse
your programs.
Now write a program that will read in that file, sort it and write the result out to another
file. If you have understood how streams work in C++, this a fairly straightforward task.
[Hint available, see end of chapter]

www.manara

EXERG\SE Write a program that will get a line of text from std: : cin and count the number of times
the letter ““a’’ is used. Bonus credit if your program correctly handles ““A”’ as well as “‘a”’.
[Hint available]

EXERC\SE There is a very simple free function that takes a char argument and returns the uppercase
equivalent if the argument represents a lowercase letter. If the char argument represents
anything else the argument is simple returned unchanged. The declaration of this function,
provided in the <cctype> header is:

char toupper(char);

If you have understood the subscripting of a std: : string object, you should be able
to write a simple program that gets a line of text from the keyboard and then displays that
text with all lowercase letters converted to uppercase.

[Hint available]

EXERG\SE In the early days of computing when the main output device was only capable of printing
letters, creative programmers used to write programs that produced pictures entirely
composed of letters and punctuation marks. Produce a simple picture on the screen in the
same way.

[Hint available]

EXERG\SE Modify the program you wrote for Exercise 4 so that the user is prompted for the name of the

file with the data in it. Use a std: : string object called fi1ename to capture
the response.

You will need to use one of my utility functions to open the std: : i fstream object
with a file name that is stored in a std: : string variable because the C++ Standard
Library does not provide such a function (that is no great problem to experienced C++
programmers, just a minor irritant).

In my header fgw_text.h there are declarations for functions to open files for
ifstream and ofstream objects given the filename in a std: : string variable. The
declarations are:

void open_ifstream(std::ifstream & input_file,
std::string const & filename);

www.manara

void open_ofstream(std::ofstream & output_file,
std::string const & filename);

These declarations are in namespace fgw; so you will need to add fgw: : to the
function name when you use it. (Or put a using namespace fgw directive after you have
included the header file fgw_text.h.) A typical call would be:

fgw: :open_ifstream(input, filename);

where input and filename have been suitably defined. You do not need to include
fgwlib.a into the project because the definition is directly available in the header file. (I
used a little trick called inline delegation which allows me to get away with putting a
definition in a header file.)

Note

None of the above five exercises is as visually exciting as the things that you can do with our playpen
graphics facilities. However, each one requires programming skill so I hope you will take up the challenge
and not elect to skip them.

Getting ints from the Keyboard

As I wrote the above five exercises for you I found myself increasingly frustrated by the fact that there was no
good way for you to get a number from an input stream. The problem is simply that we have to put too
much trust on the source supplying an int value when we ask for one. The classic way of getting an int
value from the keyboard is demonstrated by this very short program:

#include <iostream>

int main(){
int 1(0);
cout << "type in a whole number: ";
cin >> 1i;
cout << "the square of " << i <<

is << i*i << "\n';

}
ROBERTA

I thought you told us not to use the >> operator without immediately checking that it had worked.

FRANCIS

Yes I did, but I have to show you why and to do that I need to break the rule. Actually the program still works safely it is just that i will
remain O if the user gives bad input.

www.manara

I hope by now that your first instinct has been to create a project, compile and run that program and
then test it to see how it behaves when you type in invalid data. If you have not already done that, please do
so and get used to always testing code. That way you build up experience with both success and failure.

Now let us create a little function that will handle the problem. Note that this is just one of numerous
alternatives, but we do not need to worry much about efficiency or speed because input from the keyboard is
unbelievably slow in computer terms.

#include <iostream>
#include <string>

using namespace std;

int getint() {

for(55) {
int value;
cin >> value;
if(cin.failQ) { // if cin >> failed?
cin.clear(Q); // reset cin...
string garbage;
getline(cin, garbage); // ...and ignore whole Tine
cout << "\nThat was not a whole number, try again.\n";
}
else {
return value;
}
}
}

It reminds me of using a fuse. cin.fail() inspects the state of the input stream and if it has failed (i.e.
the fuse has tripped) it tells us and we reset it (that is what cin.clear() does). Having done that, cin will
work but it still has garbage blocking it (whatever the user typed that was not a number) and so we just read
it in and throw it away. Now we ask the user to try again.

If cin is still working then the user has given us what we asked for and we can carry on. Notice that we
have a “for ever”” loop because the first three elements of the for-statement are empty. We get out by
returning from the function.

The getint() function enables us to rewrite the program more safely. Put the getint() function in
your utilities files then try the following source code:

int mainQ{
int 1i;
cout << "type in a whole number: ";
i = getint(Q);
cout << "the square of " << i << " is "
cout << "Press RETURN";
cin.get(Q);

}

Handling the Unexpected

getint() works fine if we are getting input from the keyboard because we know we have a user who can be
badgered into:providing what we need. In|practice we might count the failures and only allow so many

<< i*i << "\n';

www.manara

before we assume that the keyboard is not being managed by an intelligent being — perhaps your cat is
experimenting with programming. Limiting tries is an extra refinement that we can leave for now.

Note that there is nothing special about incorrect input from a keyboard because we know that even
the most careful human being will make mistakes from time to time. But what about erroneous data from a
file? There is no point in trying to handle that with retries: something is wrong and we do not expect files to
contain wrong information. Well even if we do, there is no general solution to correct it. All we can do is
detect the error and shout for help. C++ provides a mechanism for that, exceptions. There is a lot of
detailed refinement to the system but we are going to deal with the bare bones for now.

The first step is to wrap up source code from which an exception (a shout for help) may come. We call
that wrapper a try-block. The idea being that your program tries the code in the expectation it will work as
planned but prepares to catch problems.

Much later we will see that specific kinds of problem can be caught and handled in whatever way the
programmer chooses. For now we are going to deal with the catch everything mechanism which is written
as catch(...){}. The action on catching a problem is placed in the braces.

The third part of the mechanism is called “‘throwing an exception” and happens where a problem is
detected. An exception can be any object that can be copied but is usually an object of a type designed for
signalling a problem or exception.

The following code uses a very simple exception mechanism to prevent a program continuing when a
file has been corrupted (does not contain the expected data):

int getint(istream & source) {

int temp;

source >> temp;

if(source.fail(){ // test source worked
source.clear(); // reset the source stream
cerr << "Corrupted data stream accessed in getint.\n";
throw fgw::problem("Corrupted data stream.™);

}

else return temp;

If temp successfully obtains a value from the input stream it will be copied back as the return value
from the function. However, if it fails the message "Corrupted data stream accessed in getint."is
sent to the error output stream (remember that that defaults to the screen). A similar message is wrapped up
into a nameless fgw: :problem object (a simple type provided in my fgw_text.h header file to report
problems via the exception mechanism) that is thrown to warn the part of the program that was expecting
getint to return a number that it couldn’t.

Before I go on, I should clarify how it is that I can use the same function name for this form of getting
an int as I did for the case where I just wanted to get one from cin and was willing to wait until the user
satisfled my need. C++ allows us to reuse function names as long as either the context is different (for
example, in a different namespace) or the types of the parameters are different. That is a little like reusing the
name ‘‘Francis” as long as it is in a different family or there is some other way of distinguishing (such as
senior and junior).

However int getint(istream & input) is not the same function as int getint() which means that
it needs its own declaration in the relevant header file (your utilities file). It is only when the compiler can
see these different declarations of functions that share a name (but have different parameter lists) that it
knows that it will have to choose between them when the name is used. It chooses on the basis of which one
best matches the provided data.

Inthis.caseythe fizst-version-of getint has an empty parameter list and the second form has a single
istream & parameter. That means that the compiler can tell which I want when I call getint by whether I
provide any data. If I do, it will try to call the second form and, if I do not, it will use the first one. This
mechanism is called overloading and is used a lot in C4+. Experienced programmers largely confine the use

www.manara

of overloading to cases where there are different ways to achieve the same objective. Our use of getint is an
example of sound use of overloading. In both cases we want to get an int value. In one case we can check
the data and ask for it again if it is inappropriate. In the other cases we know we cannot ask again so we need
to report the problem for the program to deal with it elsewhere.

Now let us look at that simple program, but with the data coming from a file stream rather than
the keyboard.

#include "fgw_text.h"
#include <fstream>
#include <iostream>

using namespace fgw;
using namespace std;

int mainQ{
try{

ifstream source("data.txt");

if(source.fail()) {
cerr << "Failed to open data.txt.\n";
throw problem("data.txt failed to open.");

}

int i(getint(source));

cout << "the square of " << i << " is " << i*i << "\n';

}
catch(...){

cerr << "***Something went wrong.***\n";
}

The try followed by an open brace tells the compiler that the source code up to the corresponding
close brace may fail with an exception. In this case there are two points of failure: the file called data.txt may
fail to open (perhaps it does not exist) or it may open and become the source of data for input but it might
not contain the data we need (an int value).

Because I want to keep things simple, if there is a failure I just want to tidy up and end the program. I
am not interested in what went wrong. Of course in serious programs I will probably want to distinguish the
different kinds of failure and take different actions.

For now I want you to develop good habits. You need to get in the habit of checking for problems that
could stop your programs from working as intended and take some form of action. The nice thing about
C++ (not shared by all programming languages) is that we can report a problem when it is detected and
throw it to the place where we can handle it. We separate detection of problems from solving them. This is an
important concept when we build programs out of functions (that call functions, that themselves call
functions, etc.). The writer of a function often does not know what the caller will want to do when things go
wrong. Throwing and catching exceptions allows the responsibility to be handed over from the place where
it can be detected to the place where it will be dealt with.

We will see more about exceptions as we progress but for now I want you to get into the habit of
wrapping the source code of main into a try-block. After that block I just want you to catch(...) and issue
amessage like the one in my example. Later on we will do more. Even if you are not convinced you fully
understand this, trust me and do it anyway. Develop good programming habits now and you will not have to
unlearn bad habits later.

www.manara

Try the above program. When it compiles and executes it should give you an error message and then
end, unless you have provided a file called data.txt and put a number at the beginning of'it. Try the program
with and without an available data.txt file. Finally try it with a datartxt file that does not start with a number.

Use your text editor (Quincy will do fine) to create a file of whole numbers. Do not use any EXERC’SE
punctuation; just separate the numbers with spaces or with newlines (either will work). Make
0 the last number in the file.
Now write a program that will open the file, read in the numbers one by one and
display each number with its square (number multiplied by itself) and cube (the square of the
number multiplied by the number, so the cube of 2 is four times two, which is eight) on the
screen, one line of output for each number in the file. Stop when the number read in from the
file is zero.

Use a suitable sequence container to store all the numbers from the file in Exercise 6. Find EXERC’SE
the arithmetic mean of the numbers (the total divided by the number of items, frequently

called the average) and display the answer on the screen. Now calculate and display the

median of the collection of numbers. The median is the middle number when they are

arranged in order of size. Strictly speaking if there is no single middle item (because you

have an even number of items) it is the average of the middle two.

Use the numbers in the file you created for Exercise 6 as data for a bar chart. What | want is EXERC’SE
for you to create a display with bars that represent the numbers in the file. For example if the
first three numbers in the file are 13, 5, 9, | want three horizontal bars of 13 units, 5 units and
9 units in length.

You can write a program that creates the bars from repeated symbols (“*” is often
used for this) or you can use the graphics resources of playpen.

If you feel up for a challenge, ensure your program can deal with negative numbers
with bars going to the left.

Finally attempt the same task using asterisks but in vertical columns. See if you can
arrange that the positive values are represented by upward columns and negative ones with
downward columns.

Note that | do not expect readers to complete all parts of Exercise 8. It isn’t that you
need fancy programming, but you need to see how to use the tools you have to achieve the
objective. That is what programming is about and it takes a lot of practice to achieve simple
programs for tasks such as the above. Sometimes I will give you a tough exercise as a
challenge to the very brightest of my readers.

www.manara

ENDNOTES

ROBERTA’'S COMMENTS

I didn’t have any problems with the alphabetical names program other than my usual typing of commas instead of arrows
(angle brackets). But when I followed the instructions to send the names to a file I was initially disappointed that it didn’t seem
to do anything. What I didn’t realize is that the program actually creates a file called names.txt in the same directory in
Quincy. I have added some more comments about the exercises but asked Francis to put them with the solutions.

Exercise 1

You will need to use an i fstream object to get data in. That object will need to open the file
of names you created and so will need to know what that file is called.

Exercise 2

Roberta came up with a very unconventional solution to this problem (see Solutions) but |
expect your answer to set up an int that is initialized to zero. Then it can be incremented
each time you identify the required letter.

Exercise 3

If name is a std: :string, then name[0] = "H"; will replace the first symbol of name
with an H. For example, if name had contained ‘“‘cowl’ it will now contain “Howl’.

Exercise 4

You could use your text editor to create a picture from letters and symbols and then write a
program that reads the file, line by line, into a string and displays the result on the screen.
There are other ways of achieving an answer. Try to come up with alternative solutions.

SOLUTIONS TO EXERCISES

Exercise 1

int main(Q{

string const endinput("END");

vector<string> names;

ifstream source("namefile.txt");

for(int i(0); i != 1;){
string fullname;
getline(source, fullname);
if(endinput = fullname) i = 1;
else names.push_back(fullname);

www.manara

sort(names.begin(), names.end());
ofstream outfile("names.txt");
for(int i(0); i != names.size(); ++i){
cout << names[i] << '"\n';
outfile << names[i] << '"\n';

ROBERTA

I first decided to make sure I had successfully got the file by sending the output to the screen before continuing. Perhaps I
should have more faith in myself but I am beginning to learn that it is better to test early and often.

Exercise 2

Roberta’s solution

int main Of
cout << "type in a sentence. \n";
string sentence;
vector<string> letter_a;
getline(cin, sentence);
for(int i(0); i != sentence.size(); ++i){
if(sentencel[i] = 'a'){
letter_a.push_back("a");
}
else if(sentence[i] = 'A"){
letter_a.push_back("A");

}

cout << "there are << Tletter_a.size() <<
<< sentence << "'\n";

a s 1n

This program exhibits a programmer’s turn of mind. She took what she knew and created a
correct program that would solve the problem. It does not matter that it is not the way that an
ced programmer would have done it.
g her solution with you is that it shows how much variety

[it C 1 programs.
ol

R fyl_lm

www.manara

ENDNOTES

My solution

int main Of
cout << "type in a sentence. \n";
string sentence;
int count_of_a;
getline(cin, sentence);

for(int i(0); i != sentence.size(); ++i){
if(sentencel[i] = 'a'"){
++count_of_a;
}
else if(sentence[i] = 'A"){
++count_of_a;
}

}
cout << "there are << count_of_a <<
<< sentence << "'\n";

'a's in

Actually that is not exactly what I wrote first time round but Roberta’s basic program was so
good that I just edited it to demonstrate the solution I was expecting.

ROBERTA

As you can see Francis was rather amused at my solution to Exercise 2. He had assumed that I would use an int to
count but in the earlier draft of this chapter, he had not included any information about chars and ints so my solution
was, as far as I was concerned, the only possible solution.

Perhaps because he made such a big thing of my solution I have become very fond of vectors. I seem to use
them rather a lot — my current philosophy of programming is “when in doubt use a vector.”

Exercise 3

int main Of
cout << "type in a sentence. \n";
string sentence;
getline(cin, sentence);

for(int i(0); i != sentence.size(); ++i){
sentence[i] = toupper(sentencel[i]);
}

}

cout << sentence << '\n';

www.manara

ROBERTA

I couldn’t do this at first because I misread the instructions and didn’t really understand much about functions at the
time. Once I realized that I had to call the function whose name was toupper, it worked. (I didn’t have the benefit of
solutions to help me at that time.)

Exercises 4 and 5

I am not giving solutions to these. However you do have to be careful if you want to use a “\"’ in your
picture because of its special significance as an escape character in C4+. Which means that for every
backslash you want displayed you will have to use two in your source code.

ROBERTA

I couldn’t see the point of Exercise 4 at the time but when I came to write a program for my own use later I found that it
was useful after all.

Exercise 6

int main(Q{
try{
ifstream source("numbers.txt");
if(source.fail()) {
cerr << "Failed to open numbers.txt.\n";
throw problem("numbers.txt failed to open.");
}
for (int finished(0); finished !'= 1;){
int i(getint(source));
ifG = 0){
finished =
}
else {
cout << i <<

"< it << " T << MR << "\n';

}
catch(...){
cerr

t _wrong.***\n";

-

www.manara

ENDNOTES

ROBERTA

For various reasons I couldn’t get getint(istream & source) to work so I continued with the exercises using
getint(). I didn’t seem to have any problem with the exercise but when I added the code for Exercises 7 and 8 to the
file the resulting answers were out by 1 each time. The problem was in this piece of code:

for(int stop(0); i !=1;){
int i(getint(Q));
if(stop = i) stop = 1;
else cout << "the square of is
<< i*i << ", and the cube is "<< i*i*i << "\n';
numbers.push_back(i);

<< i <<

Actually this is not my original code. When I came to add my comments to the book I was rather embarrassed by my
earlier attempts.

When Francis checked my answers, he spotted the problem straight away. In Exercise 6 I should have
enclosed the two expressions after e1se in curly braces.

else {
cout ... ;
numbers.push_back[i];

ROBERTA

I learnt quite a lot from this mistake not least the fact that an error early in the code that does not show up immediately
can affect the program later. Because the first exercise worked, I assumed it was correct.

Exercise 7

int mainQ{
try{
ifstream source("numbers.txt");
if(source.fail()) {
cerr << "Failed to open numbers.txt.\n";
t failed to open.");

ae) ol

. !
Sl AL

www.manara

for(int finished(0); finished != 1;){
int number(getint(source));
if(number = 0){

finished = 1;
}
else {
numbers.push_back(number);
}
}
int total(0);
for(int i(0); i != numbers.size(); ++i){
total = total + numbers[i];
}

cout << "the mean is
int middle(numbers.size()/2);

cout << "the median 1is ";
if(middle*2 = numbers.size()){

<< "\n';
}
else {
cout << numbers[middle] << '\n';

}
}
catch(...){

cerr << "***Something went wrong.***\n";
}

with because of the rounding loss.

numbers before calculating the median.

Exercise 8

int main(){

try{
ifstream source("numbers.txt");

umbers.txt.\n";

: to ope
! ‘:l ! t failed to open.™);

<< total/numbers.size() << "\n';

cout << (numbers[middle-1] + numbers[middle])/2

There are several issues with this program (which is by far the hardest that I have asked you to do
so far). The first is that you do not yet know how to use decimal fractions so all your arithmetic is
integer arithmetic. The main significance is that divisions will always round down to a whole number.

I made use of this when working out the median because I needed a way to discover if I was
dealing with an odd or even number of numbers. If numbers.size() is even then twice half of it will
get me back where I started. If it is an odd number twice half of it will be one less than what I started

The rest of the program is just careful attention to detail such as remembering to sort the

: _ throw
SN AL

www.manara

ENDNOTES

}
int const max_neg(-40);
for(int finished(0); finished !'= 1;){
int const number(getint(source));
if(number = 0){
finished = 1;
}
else {
int spaces(40);
int stars(0);
// calculate case where input is negative
if(number < 0){
if(number < max_neg)
throw fgw::problem("number out of range.");
spaces = spaces + number;

stars = -number;
}
else {
stars = number;
b
for(int i(0); i != spaces; ++i){
cout << " "y
}
for(int i(0); i !'= stars; ++i){
cout << "*";
}
cout << "\n';
}
}
}
catch(...){
cerr << "***Something went wrong.***\n";
}

Look at the definition of max_neg and its use later on. Try to decide why it is there. What
assumption am I avoiding with it?

The above program is far from complete because it makes assumptions about the range of input
values. I am giving you this much code as a starter if you have found the exercise difficult. Work
through my code and then start adding some polish. For example you could write a function to output
n repeats of a char and use it instead of some of those inner for-loops. Indeed you should start to
inner ones should be converted into functions, not least
make the code more readable. It isn’t just magic values that we
opportunities provided by C++- to attach names to processes.

www.manara

summary
Key programming concepts

»

»

Programming uses the concept of data streams: flows of data from one place to another. A stream
that provides data is a source and one that stores data is a sink.

The commonest streams in elementary programming are the keyboard as a source and the monitor
screen as a destination.

Files are common sources and sinks for data. Because files can both provide and store data they can
be connected to a program through bi-directional streams (ones that allow data to flow both ways).
Streams provide the ability to handle data flows largely independently of the nature of the source

or sink.

Stream types may support special facilities determined by their specific nature. For example a file
stream will include facilities to connect it to a specific file by opening the file.

Programs handle the concept of text by a low-level concept of a single character (symbol) and a
higher level concept of a string of characters. The character concept has to include non-printing
characters such as a carriage return and a tab.

Programming has the concept of a container that can hold zero (an empty container) or more
objects. A string is a container of characters. There are two main groups of containers: in an
associative container the order of the contained objects is a property of the container; in a sequence
container the order of the objects is not a property.

Sequence containers can be sorted. Associative containers cannot be sorted because their internal
order is determined by the container.

Programs need to handle unexpected events such as incorrect data or missing peripherals.

C++ checklist

In this book the concept of a character is provided by the C++ char type.

C++ has a type called std: : string that matches the string programming concept and is a
sequence container of char.

std: :vector is a C++ sequence container. The type of the object contained in a std: : vector
must be supplied to make a complete data type. For example we can define a variable as a
vector<int> (a container of int), a vector<string> (a container of string) or even vector<
playpen> (a container of playpen).

All C++ sequence containers have some identically named member functions. In this chapter we
used begin(), end() and size().

The begin() and end() member functions are used to locate the first object and just beyond the
last object. If begin() = end(), the container is empty.

The size() member function reports the number of objects in a container.

Objects in string and vector can be located with the subscript (index) operator, []. E.g. if
message is a string, then message[0] is the first char.

The C++ sequence containers have a member function, push_back (), which places a copy of its
parameter at the end of the container.

sort() is one of more than fifty free functions provided by the C++ Standard Library for use with
containers. The <algorithm> header provides the declarations of all the available free functions
that can be applied to C++ containers.

C++ provides a mechanism to handle problems detected at the execution time of a program. This
mechanism is called exception handling and is provided by a throw/catch mechanism. Code that
detects a problem can use throw to communicate the problem to somewhere else in the program
that specifies that it is willing to catch and deal with the problem.

www.manara

ENDNOTES

Regions of code that may result in a throw of an exception are encapsulated into a block (compound
statement) preceded by the keyword try.

C++ allows two or more functions in the same scope to have the same name as long as there is a
difference in the parameter types. Such sets of functions sharing a name are called ““overloaded
functions”.

C++ provides the concept of named contexts for declarations, called ““namespaces”.

The fail() member function of both istream and ostream (input and output streams) tests
whether the named stream object has failed to provide useable data. For example
if(cin.fail()) deals with the case that you did not get any data the last time you used cin.

Extensions checklist

»

»

The fgw_text.h header includes declarations of a number of elements of my library that are
unrelated to Playpen.

fgw_text.h provides declarations of two functions to deal with opening and connecting a file to an
ifstream or ofstream variable which allows you to use a std: : string to contain the name of
the file to be opened (connected to) the stream object.

void open_ifstream(std::ifstream & input_file,
std::string const & filename);
void open_ofstream(std::ofstream & output_file,
std::string const & filename);

www.manara

CHAPTER @

You Can Create a Type

This chapter and the next were originally one but it grew to be an unreasonable size. This chapter now
focuses on creating user-defined types. The major objective is to help you understand more about what a
type is by following through the process of creating one. I will also introduce the basic floating-point type
(double) used in C++4-.

The type I have chosen (one that represents a point on a two-dimensional plane) requires some
mathematical expertise. This may make it harder for some readers to follow the fine detail but it makes it a
good example of encapsulating specialist knowledge. That encapsulation of knowledge empowers people
who lack it because they can use the type without having to know how it works; they only have to know
what it does.

On Not Being Underrated

Many years ago I met and became a friend of Colin Mortlock who was an outstanding Warden of Oxford’s
outdoor pursuits center in Wales. He was considered ““‘mad’’ by most other wardens of outdoor centers
because he allowed, for example, inexperienced young people to canoe on white water in midwinter. He
believes that young people have tremendous abilities that they should be encouraged to exercise. He also
recognizes that young people often lack wisdom and a sense of judgment. He once told me of an episode
where he was in charge of a group of 16-year-olds who had elected to specialize in white water canoeing for
the second week of a two-week visit. Their first experience of canoeing had been a single day the

previous week.

On the third day of the “specialist” course Colin wanted this group of eight youths to come down a
fairly severe rapid on the river Wye. Because they lacked the experience to read the water, he needed to show
them the route. Because he was worried about the discipline of the group he went down backwards so that
he could keep an eye on them.

He was amazed that they promptly started to canoe the rapid backwards; that illustrates their lack of
judgment. Seven of the eight completed the task successfully (the eighth capsized but safely recovered); that
illustrates the ability of the young to achieve having been given guidance. That left Colin with the task of
ensuring they all understood how important the guidance was to their success.

While programming is not (normally) physically dangerous there is an element of judgment that runs
alongside pure skill. It is the choice of route that is hard even when you have the basic techniques. A way to
achieve the wisdom to choose a good solution is seeing someone with more expertise tackle a
programming task.

www.manara

In this chapter I want you walk with me on the wild side of programming. I will show you the way. At
the end I will not expect you to be able to go and do likewise, but I do expect you to have deepened your
understanding of what programming is about and why it can give us so much pleasure.

Designing a Type

We spent time in Chapter 3 looking at designing a function. We had to think about how the function would
be used, what we would need to provide and how we should make it work. Designing a type is a
similar process.

Type design depends on the language that you are using. Some languages are extraordinarily restrictive;
others allow complete freedom to the programmer. C4+ sits squarely in the middle; the amount of
restriction is left to the type designer to decide.

For example, C4++ allows us to use an existing type by another name. That places the burden for
correct use entirely on the shoulders of the user. If I recycle the int type as a year type, nothing other than
personal discipline prevents the user from multiplying two years together. The result is meaningless but the
language will allow it.

The tool for this crude mechanism of creating new names for existing types is a typedef. We will find
that, used sensibly, it allows us to focus on the critical aspects of our programming without cluttering our
code with extraneous verbiage. However we should generally limit ourselves to using typedef when the
new type we want has all the behavior of the type being used. We will see a use for typedef in the next
chapter. When we come to use it I will go into the details of how to do so.

There are two major points of concern when we start designing a type: what we can do with the type
and how we store the information that objects of that type will contain. We call that information the state of
an object.

To try to understand the issues of type design let us consider some of the things that would arise if we
were designing a type to represent dates.

The date concept

The fundamental idea of a data type in programming is the combination of data and appropriate behavior.
For example think about the concept of a date. We know that dates provide a way of locating events in time.
We also know that a particular day can be identified in many different ways. For example Christmas Day 2002
describes a date that most Europeans might represent by 25/12/2002, whilst those across the Atlantic would
write 12/25/2002. Perhaps you also know that the Japanese write dates in ISO Standard format and so would
write 2002/12/25. You are less likely to know that that same date would be written as 20 Shawwal 1423 by
a Moslem or 22/11 Rén-Wii in the Chinese calendar. The Julian Day 2452634 starts at noon on that day.

Even more confusing is that some terms such as New Year’s Day identify different days according to
which calendar you are using (there are at least eight calendars in common use round the World and most of
them have fewer than 365 days in a normal year). What I am trying to highlight here is that the raw data has
to be represented in some way. There can be many reasonable representations for the same date; the one we
choose depends on what we want to achieve.

Dates also have behavior. We can subtract one date from another and get an answer as a number of days
(note that it is not a date and it can reasonably be represented by an int). That answer should not depend on
the representation we are using to identify a day. We also expect to be able to add or subtract a whole number
(int) to/from a date and get another date as the answer. However we do not expect to be able to add two
dates together, multiply dates by anything or divide a date by a number. In other words we have a clear
understanding of the behavior of dates: what we can do with them and to them; what we can ask of them
and-what.we can tell.them- Largely.that-behavior is independent of the way we choose to represent a date.

There is also a body of optional behavior whose inclusion would depend on our reason for designing a
date type. Whether we support asking for a date in, for example, the Persian Astronomical Calendar (used in
Afghanistan) would depend on our objectives.

www.manara

The concept of a date is independent of its representation but is strongly bound to its behavior. Modern
computing languages often provide facilities whereby the programmer can provide kinds of data that have
strictly limited behavior that is de-coupled from the internal representation. This combination of data and
behavior is what we generally mean by a type (often called an “‘abstract data type’’). In other words, to use a
type we need to know what it can do but, generally, do not need to know how it is done. Only the type
designer needs to worry about the latter.

Abstract data types and C++

C++ provides a mechanism whereby we can separate the internal representation and management of data
from its behavior and external representation. We can store the information internally in any way we find
useful (a common internal representation for dates is using a Julian Day where day 1 is Monday January 1,
4714 BC in the Julian Calendar). We can then make that data available in any form we choose to supply.

Because of the large number of representations and fiddly details such as when a new day starts
(midnight, dawn, noon, sunset, etc.), I am not going to take you through implementing a date type. Instead
we are going to tackle a type that will be useful for extending our graphics capabilities. We will then explore
some of the ways it can be used and the extensions that we can add with free functions to help our graphics
programming.

The double Type

In order to implement our two-dimensional point type we will need the type that C4+4 provides for floating
point data. It is a fundamental type called a double (a name derived from “‘double precision floating point
number”’). double is a keyword so Quincy will display it in blue. An immense range of decimal numbers to
a limited (but very high) accuracy can be used as double values. I am not going to worry about exactly what
that range is unless and until I use it in a context where it matters.

The doubTle type supports all the normal arithmetic operators that we might expect (+, -, * and /) as
well as a number of C++4 extended operators (see Appendix B on the CD). Note that the way the arithmetic
operators behave depends on the types of the values they are being applied to. For example, 3/2is 1 (int
values use whole number arithmetic) but 3.0/2, 3/2.0 and 3.0/2.0 are all 1.5 because as soon as a decimal
point is involved the compiler switches to floating-point (decimal) arithmetic.

The limited accuracy of a double has implications. Some simple fractions, for example, one-fifth,
cannot be exactly represented in the binary code used by computers (just as one-third cannot be exactly
represented in decimal notation). That means that a double value will often be an approximation (a very
good one) of an exact value but it might not be exactly that value.

An exact floating-point value can have more than one close approximation in terms of a double. Which
approximation we get can depend on the calculations that led to the result. This is important because it
impacts on the concept of equality. If we want to compare two double values we must decide how nearly
equal will do for our purposes or else be prepared for surprises. In general, do not compare doubTe values
for equality; compare them in some other way such as being almost equal (e.g. take one from the other and
check that the result is relatively very small).

I1/0 for double objects

Now you have been introduced to double we need to consider streaming a double value to and from an
appropriate stream object.

Sending.a-double to.an-outputstzeam (ostream object) is straightforward. Treat it exactly as you did
an int. Later you will find there are some refinements available to determine whether output is in common
format (e.g. 212.345) or in the exponential format (2.12345e2) that is often used by mathematicians,
scientists and engineers. There-are also mechanisms to determine how many figures are displayed after the

www.manara

decimal point. At this stage those are of no importance to us, just note that there is more than I write here.
We will go into further detail if and when you need it. Here is a simple example:

double value(12.34);
cout << value << "\n';

This code results in 12.34 being displayed in your console window. If you use a file stream, that data
will be stored in the file attached to the stream:

ofstream decimaldata(ddata.txt);
if(decimaldata.fail()){

throw problem("problem with file");
}

decimaldata << value << "\n'

This code saves the value of value (12.34, unless we changed it) at the start of the file ddata.txt. In
other words, apart from using a different type, everything behaves the way it did for int. The same will
largely be true of other fundamental types. I will try to remember to draw your attention to any exceptions as
and when they turn up.

We will have exactly the same problem for input that we had with int. If we have a human being in
the circuit they may make mistakes and if we have a file (or other input stream that does not allow retries) it
may be corrupted. That means we cannot safely use the >> operator that C++4- provides without wrapping it
up. We need to do what we did for int with getint (both forms), but this time for a double by carefully
replacing all the references to int with doubTe.

T ASK Try writing a getdouble() function for yourself to increase your understanding of the
problem of getting input. Remember to test that your new code works.

Avoiding repetition

Remember how much programmers hate repeating themselves? Surely as you wrote the getdouble ()
function for Task 7 you had an uncomfortable feeling of repeating yourself. The only difference between
getdouble() and getint() is that one extracts and returns a double and the other extracts and returns
an int.

There are many other types, both fundamental and user-defined, and most of them are going to face
the problem of extracting data from an input stream. Most of them will support a version of the >> operator
and will have almost the same problem as we have tackled for int and double; fallible human beings and
corrupted files.

It is far too early in your programming life to teach you how to use the C4++ mechanism (called
templates) to solve this problem. However it is very like the mechanism we used for dealing with vector
containers of different types, but this time we are going to do it for functions. Well strictly speaking, I have
done it and you get to use it.

Infgwetexth-thereis-aset-of overloaded function templates for extracting data from an input stream.
They are all variations of read<>(). You have to complete the function name by saying what type you want
to get in the angle brackets. The parameter list determines where and how the data will be extracted. The
three versions are:

www.manara

fgw: :read<>(std: :string) in which the caller (i.e. the calling function) provides a prompt and the
data is extracted from std: :cin.

fgw: : read<>() which uses a default prompt of ":" and gets the data from std: :cin.

fgw: :read<>(std: :istream) which extracts the data from the specified stream.

The first two versions allow three tries before throwing an fgw: :bad_input exception. The third
version throws an fgw: :bad_input exception immediately it fails on the basis that it is too dangerous to
continue processing a general input stream if it is delivering bad data.

When you use one of the read functions you have to put the required type in the angle brackets. So,
for example:

int 1(0);
i = fgw::read<int>("Please type in a whole number™);

results in the display of the message ‘‘Please type in a whole number”’, followed by an attempt to get an int
value from cin. If the attempt fails you will get a message telling you that the data was wrong followed by a
repeat of the prompt. If it fails three times an exception is thrown.

One advantage of using the read<> functions is that you can initialize a variable directly with the
required value. That is, instead of writing:

double d;
// do something to get the value for d

we can write something such as:

double d(read<double>("What is your weight in kilograms? : "));

Even better is that we can use the read<> functions to initialize immutable data, i.e. data that is fixed
and must not be changed after it has been initialized. For example:

int const yob(read<int>("What year were you born? : "));

The rules of C++ require that const qualified variables must be initialized (given a value) in the
process of defining them. The more traditional methods for obtaining data from input fall foul of that
requirement and make it difficult to declare const variables (yes I know that is a weird combination, giving
us a variable that must not change). The read<> mechanism quietly solves that problem.

Creating a Two-Dimensional Point Type

I want to be able to work with lines and shapes. Mathematically lines are made up of points. The
mathematical concept of a point is not very practical in the context of computer graphics because it has no
size. On the other hand, our graphics representation in a Playpen has a problem because it is made of pixels
and we can only have an exact number of pixels, they are the “atoms’ of our graphics system. We deal with
pixels as discrete, indivisible elements. Discrete elements are not very good tools for representing something
that.is.continuous.such-as-a-mathematical-plane. We need a compromise that will allow us to do accurate
mathematical calculations whose results can be used to determine the details of what we draw.

First I need to bring you up|to strength on some domain knowledge. Even if you feel confident of your
understanding 6f coordinate systems you will probably benefit from a quick reminder. If these are strange to

www.manara

you, or caused you sleepless nights when you were learning about them at school, do not worry, read the
following and then relax and let me do the work.

Coordinate systems

Mathematicians have a concept of a plane that extends
forever in all directions. They locate positions on that
plane by choosing some special point that they call the
“origin’’ and a primary direction, which is normally 4 G4
called the “‘x-axis”. You can identify all other points on S
the plane by imagining a line drawn from the origin to Vi |
the point and recording two pieces of information; the / '
length and direction of that line. Conventionally the / 4—|— 5.0
direction is measured as a rotation anticlockwise from / !
the primary direction. This way of identifying points on / |

|

»
»

a plane is called “‘polar coordinates’. /

The distance from the origin is called the ;\

“modulus’ and the direction is referred to as the 3
“argument”’. Each pair of numbers — a modulus and 53.13 degreés
an argument — defines a unique location on a plane. By

convention we give the modulus first and the

argument second.

There is a second way of locating a point that is attributed to Descartes and so is called ““Cartesian
coordinates’’. This is the system you probably learnt in school. We add a secondary direction through the
origin, called the “‘y-axis”. The y-axis is at right angles to the x-axis. A point is located by giving its distance
from the y-axis (to the right is positive, to the left is negative) followed by its distance from the x-axis (up is
positive, down is negative). This diagram illustrates the two methods for locating a point on the plane.

The point (3, 4) in Cartesian coordinates is the same as the point (5, 53.13...%). The dots represent
the fact that the angle is not exactly 53.13°.

Measuring angles

This is another issue where domain knowledge rears its head. Most of us expect to measure angles in degrees.
However mathematicians use an entirely different mechanism called radian measure. It happens that radian
measure works well with fundamental mathematical formulae for computing various mathematical values.
Perhaps that was a major motive for making radian measure the standard way of representing angles in
computing. For example a right angle is 90° in our common terms, but in radians it comes to approximately
1.5708 (or /2, for the mathematicians among my readers).

For the convenience of those who prefer to stick with the measurement with which they are familiar I
have provided two small utility functions to do the conversions between radian measure and degrees. You
will find them in fgw_text.h.

The full names of the two functions are fgw: : degrees and fgw: : radians. Their use should be pretty
straightforward. For example, if you write fgw: : radians(90) it should return the value of 90° in radian
measure, i.e. roughly 1.5708. If you write fgw: :degrees(1.5) you should get a number slightly less than
90 which is the number of degrees that is equivalent to 1.5 in radian measure.

Their declarations in namespace fgw are:

double degrees(double radians); // convert radians to degrees
double radians(double degrees); // convert degrees to radians

Note that inside a namespace block the qualification is unnecessary. When we are outside the fgw
namespace we have to identify the degrees () and radians() functions as belonging to namespace fgw

www.manara

(either by explicit qualification with fgw: :, or by the directive using namespace fgw; which dumps all the
names into the current namespace). Remember that we never use the second form in a header file. I use
explicit qualification in header files and, generally, a using directive in an implementation file.

Write a program that will prompt you for an angle in degrees and output the equivalent EXERC,SE
radian measure to the screen. The program should repeat the prompt and response until you
input a number greater than 10000.

Designing the point2d type

Before continuing I need to specify what the point2d type will be used for. Until I have done that it is
impossible to decide how we should design it.

What I want is a type that will allow me to accurately specify points on a general mathematical plane. I
want to be able to use these points to specify the vertices of polygons, the ends of lines, the centers of
circles, etc.

I will use the simplest of all polygons, the triangle, to demonstrate some of what I want to be able to do
with my point2d values. A triangle has three vertices. To put that another way, if I know the location of
three points they will define a triangle.

Once I have a triangle there will be various things that I may want to do to it. Mathematically these are
called transformations. The common transformations are:

Translation Moving an object (the triangle) without distorting it. If I can move each of the three vertices
the same amount then I will have moved the whole triangle by that amount. Given the Cartesian coordinates,
translation is easy, just add the same amount to the three x coordinates of the vertices and then add another
amount to each of the y coordinates. Notice that there is nothing about whole numbers in that. Movement to
the right is positive and movement upwards is positive.

Moving the triangle defined by [(3.7, 2.9), (7.2, 1.5), (5.1, 7.2)] 3.3 to the left and 2.2 up will give a
triangle defined by [(0.4, 5.1), (3.9, 3.7), (1.8, 9.4)]. I subtracted (moved left) 3.3 from each of the three x
coordinates and added (moved up) 2.2 to each of the y coordinates.

Rotation Rotating the triangle about some point without distorting it. For the moment, let me confine
myself to rotation about the origin. Rotation requires that we turn the line joining each point to the point of
rotation (origin for now) through the same angle. It is not easy to work out the new locations of the vertices
in Cartesian coordinates, but it is very simple when using polar coordinates; we just add (or subtract) the
same amount from the argument value of each point. Given a triangle defined by [(12.5, 45°), (6.3, 85°),
(8.2, 115°)] the triangle we get by rotating 30° anticlockwise (remember that that is positive in polar
coordinates) about the origin will be given by: [(12.5, 75°), (6.3, 115°), (8.2, 145%)].

So translation is easy in Cartesian coordinates and rotation is easy in polar coordinates.

Magnification Changing the size of a triangle (both increasing and reducing) is equally easy to do in both
systems. We multiply lengths by the magnification factor. That is we multiply both the coordinates in the
Cartesian representation, or just the distance one in the polar representation.

However stretching (shrinking) our triangle in only one direction changes its shape and is another case
that is easier to do with Cartesian coordinates.

Reflection Reflecting in either the x-axis or y-axis is easy using Cartesian coordinates, as it is for reflecting
in lines parallel to those. “Reflecting™ through a point is also easy with Cartesian coordinates. Reflecting in
other lines is more complicated.

www.manara

My conclusion is a slight preference for using Cartesian coordinates but I would want to use polar
coordinates sometimes. Following through I want the following behavior for my point2d type:

Report its x coordinate (Cartesian coordinates)
Report its y coordinate (Cartesian coordinates)
Report its modulus (polar coordinates)

Report its argument (polar coordinates)
Change its x coordinate (Cartesian coordinates)
Change its y coordinate (Cartesian coordinates)
Change its modulus (polar coordinates)

Change its argument (polar coordinates)

There is a less obvious requirement in that I need to be able to create point2d objects. For that I need
something that C++ calls a constructor. More about that in a moment.

Please notice that we are not yet concerned with drawings, only the way that we might store and
recover information about the location of a single point.

To summarize, I want to be able to handle an approximation to mathematical points in both the
Cartesian and the polar coordinate systems, picking whichever best suits the task in hand.

Some readers may wonder whether I should be including managing points through both the polar and
Cartesian coordinate systems. Certainly, I could limit myself to the more widely-known Cartesian system and
temporarily make it easier for the non-mathematical reader. I hope that once you see how polar coordinate
representations add power to the point2d type you will agree with my decision to support both from the
start. Incidentally this is another way to avoid repetition: if we are going to convert between the two
representations do it once. In this case, the “once’ is in the design of the type.

The above list of eight behaviors and the constructor describe what programmers call the requirements
for a public interface. Each of those nine things will be provided by a member function (well, the
constructor is strange because it does not conform to the normal requirements for a function, as we shall see
when we get to declaring one).

Declaring the behaviors

The first four behaviors are concerned with getting data out of a point2d object. In other words what can we
ask a point2d object about the location it represents. The declarations are simple once we decide to use the
fundamental C4++ type called double. This is a good type for our purpose because it provides a good deal of
numerical accuracy with a range of values that is much larger than we need. A double represents values that
we would normally write as decimal numbers such as 2.71, 8407.56, —0.0023 and so on. (If you are
interested, a doubTe guarantees 10 significant figures of accuracy in decimal numbers.)

So here are the four function declarations that correspond to the four requirements for getting data:

double x() const;
double y() const;
double modulus() const;
double argument() const;

The data each one asks for is provided by the return value; that is, the return value is the answer to the
question the function represents. When we call the function we will get back a double value as an answer.
The call can be used exactly as if we had used the number directly (had we known what it was) or used a
variable containing the value we want. Because these will be member functions we will be able to use them

www.manara

via the object name and dot syntax used in this code fragment:

point2d pt(3, 4);
cout << pt.x(); // sends the x-coordinate value of pt to cout
cout << pt.y(Q); // sends the y-coordinate value of pt to cout

Before I go on to the four functions that will allow us to change the state of a point2d object, I need to
explain the use of the const keyword when it is added after the closing parenthesis of a member function
declaration or definition. It has a very special meaning. It tells the compiler that the member function
concerned will not change the object. In other words it states that the member function will report on some
property of the object without changing anything. You might like to think of it as a read-only function. It is
very important to add that const qualification to all member functions that do not change an object’s state
(i.e. its data). If you forget (and you surely will sometimes) you will eventually get error messages when you
try to use those functions on a const qualified object. const objects can only use const member functions.

The declarations of the four member functions for changing the location a point2d object
represents are:

point2d & x(double new_x);

point2d & y(double new_y);

point2d & modulus(double new_modulus);
point2d & argument(double new_argument);

Note that these are not qualified as const. The reason is that these four functions are designed to
change the information stored inside a point2d object. I have given these four functions the same names as
the four corresponding functions for getting information. The compiler will not be confused because the
ones asking for information have empty parameter lists (they have nothing to tell the point2d object) while
the four functions that change the state of a point2d object have parameters to pass in the new data used by
the function to change the stored information.

The return type of each of the four functions that change a point2d object is surely strange. Do not
worry about it now. Functions have to have return types (even if only void). [am using one of the popular
idioms for member functions that change an object and return a reference (remember that references provide
the original object, not a copy) to the object being changed. That means that the return type must be a
reference to a point2d.

Now we have declarations of pairs of member functions that will read or write each of the four
properties of a point that we might wish to use or change.

Creating new objects

How do we create (or declare or define) a fresh point2d object? C++ has a special mechanism for this. We
call it a constructor. Constructors look very like functions except that they do not have return types and they
use the name of the type being created as their name. It is customary to refer to C4++ constructors as
functions. Strictly speaking they are not functions because they lack a return type (not even void) but
everyone calls them functions. In the case of point2d the constructor will be:

point2d(???);

with those question marks replaced by a suitable parameter list. We will choose the parameters in a moment.
The job of a constructor is to create a new object of a type when we want one. It is an important tool in
programming because it allows us to set up new objects in a safe fashion. Not all languages provide such a

www.manara

mechanism. Those that do not rely on the programmer to be careful not to use an object until it has been
given suitable data. Fortunately you have chosen to learn to program with C++- and so will not be called on
to be that careful.

There are three sensible ways of constructing a new point2d object. We could do so by knowing the x
and y coordinates of the new point2d object, we could do so from the modulus and argument of the new
object or we could do so by copying an existing point2d object.

The last of those is called copy construction and we will leave that for now because as long as we do
not interfere, the compiler will make up a copy constructor for us when it needs one. It will do the right
thing for objects of simple types such as point2d.

We have to choose which of the first two ways we will use to construct a point2d object. We cannot
use overloading here because both Cartesian and polar coordinates use two doubTles to represent them. I am
going to opt for a constructor that uses data that represents the location in Cartesian coordinates. For most of
us that will be the simpler choice. Now we can fill in the parameter list for our constructor:

point2d(double x, double y);

Defining the type
It is about time I put this together in the way that the compiler expects to see it. New types created by

programmers are called classes (think of classes or categories of objects). The (incomplete) definition of
point2d looks like this:

class point2d {
public:
// constructor:
point2d(double x, double y);
// read access functions
double x() const;
double y() const;
double modulus() const;
doubTle argument() const;
// write access functions
point2d & x(double new_x);
point2d & y(double new_y);
point2d & modulus(double new_modulus);
point2d & argument(double new_argument);
private:
// data declarations to be decided
};

We start with the keyword class to tell the compiler that we are providing a new type. We follow
with the name of the new type. Then we have an open brace that tells the compiler that we are about to
declare all the bits that make up our new type. We call this list of declarations a “‘class definition”” (and this is
one of those cases where definitions go in header files). We close the list of declarations with a closing brace
and a semicolon.

There are two new keywords in the above source code: public and private. They are called “‘access
specifiers’” and tell the compiler what source code is allowed to use (access) the functions and variables that
are-declared:Declarations-in-a-public-block can be used anywhere that the class definition is visible. Names
declared in a private block can only be used in the definitions of the members of this class.

Access is a very important concept for modern object-oriented programming. It is important to the
class designer:because he keeps control and has the freedom to make internal changes to the way that a type

www.manara

YOU CAN CREATE A TYPE

works. It is also important to the users because it stops them from accidentally using objects of the class in
unintended ways. The commonest items to place in a private block are the declarations of the data that will
store the information that this type of object will use. In this case I have not yet provided such declarations
because I have not committed myself as to how to represent the location of a point2d object as internal data.

Starting coding

The declarations Please follow in my footsteps and experience the development of the point2d type.
Start a new project. Create a header file called point2d.h. Put in the inclusion guard:

#ifndef POINT2D_H
#define POINT2D_H
#endif

I will not always spell this out for you because you should be getting used to it, however this is one of
the times where it may matter and leaving it out could result in surprising error messages about redefinitions.
Type in the definition of point2d that I gave above (remember that the #endif should be the last entry in the
file and the other two lines should be the first two). Did you remember to add your name and date as
comments? Save this file.

Testing Start a C++ source code file to test point2d. Call it point2dtest. A test should cover every member
function. Something like this will do:

#include "point2d.h"
#include <iostream>
using namespace std;

void showstate(point2d const & pt){
// note that the 'const &' above means that we can read
// the original but not change it

cout << pt.x() << "\n';

cout << pt.y() << "\n';

cout << "modulus: " << pt.modulus() << '\n';

cout << "argument: "<< pt.argument() << "\n\n";

int main(){
try{

point2d apt(3, 4);
showstate(apt);
apt.x(4);
apt.y(-3);
showstate(apt);
apt.modulus(10);
showstate(apt);

www.manara

catch(...){
cout << "\n***There was a problem***\n";

}
}
ROBERTA

Can you explain that showstate () function? I thought you put function declarations in header files and then implemented
them somewhere else. Here you have provided a complete definition in the same file as main ().

FRANCIS

Sometimes we want a purely local function. We place its definition in the file that uses it. (Much later I will show you how to make a
function strictly local and completely invisible outside the file where it is defined.) As the declaration must be seen by the compiler before
your code calls the function, it is easiest to put the definition (remember that definitions are always declarations) before the function that is
going to call it.

If you later decide that you want to use the function elsewhere, you cut out its definition, paste it into a new C++- source code
file and then create a header file with its declaration that can be included everywhere that you want to use the function.

In other words we do not go to all the trouble to provide for general reuse of a function until we decide that we are going to
reuse it.

Try to compile this file. (When you create a project, do not include fgwlib.a. If you do include it, do not
putin a using namespace fgw; directive; if you do, you will get name clashes from names in my library.)

I do not know if you find it surprising that the code compiles (assuming you have not made any typing
mistakes). If you try to link it (build the project or press F9 to build it and run it) you will get several errors
because we have only declared but not defined the member functions of point2d. We have not provided
anywhere to store the data for a particular point2d object. The compiler does not care, the public interface of
our definition of point2d acts as a contract between the compiler and us. We have undertaken to provide the
necessary definitions when they are needed. It is the linker that can spot if they are missing and starts giving
us messages to tell us about our breach of contract.

That is one of my major motives for walking you through this design. The pub1ic interface of a class is
what is needed in order to create and use objects of the type we are designing. The private interface is only
significant when we come to implement the type (make it work). Please get this concept fixed in your mind,;
it is the pubTic part of a class that matters to users. You may be curious about the private part but it should
not influence your use of the type. If knowledge of the private part influences your use then there is
something very wrong.

Now it is time to fulfill our contract and define all those member functions that we have used and add
the private declarations of data that point2d objects will need for storing information.

Implementing the point2d type

We call the combination of member function definitions and declarations of private data the
“implementation of a class type.”” The compiler needs to know how much storage our type needs, so those
declarations of data storage need to be visible to the compiler. Some languages have ways of hiding that
information from programmers so that they are not even tempted to misuse those private declarations.
C+4 makes life easier for the compiler and just puts you on your honor to ignore everything marked as
private (a bit like notices about keeping off the grass, which you might ignore when there are no park
wardens around). If the compiler spots you using private material it will stop you. Most of the time it will
manage to spot.such uses and.call an access violation.

www.manara

Choosing the data representation

First we must reach a decision on how we will store the position information in point2d objects. We have
two sensible choices, either we can store the Cartesian coordinates or we can store the polar ones. The great
thing about making the data private is that we are free to change our minds later, so this decision is not
final. T am going to opt for using Cartesian coordinates internally. That means I need to add two data items of
type double to represent the x and y coordinates. Here are the two necessary declarations:

double x_;
double y_;

Go to the definition of point2d and add those two lines to the private block.

The use of an underscore at the end of the name of an item of member data is a personal convention of
mine. If you want to choose other names for the two coordinate values you are free to do so — those names
have no significance outside the class implementation. However choose a name that makes it clear what it
refers to and that does not clash with the name of a member function — we can overload function names but
we are not allowed to use the same name for data and a function. The class definition should look like this:

class point2d {
pubTic:
// constructor:
point2d(double x, double y);
// read access functions
double x() const;
double y() const;
doubTe moduTus() const;
double argument() const;
// write access functions
point2d & x(double new_x);
point2d & y(double new_y);
point2d & modulus(double new_modulus);
point2d & argument(double new_argument);
private:
double x_;
double y_;
};

Make sure you actually save this header file and check that the test program still compiles. Frequent
testing catches typos early and saves a great deal of time and anguish.

Implementing the constructors

Create a new C++ source file called point2d.cpp and start with the following statement:

#include "point2d.h"

The header file is needed because the compiler must see the complete definition of a class in order to
acceptidefinitionsiof themmemberfunctions|that have been declared there. In other words it needs to know
what we contracted to do so that it can verify that we define the same functions that we declared. The
compiler can catch a lot of typos this way.

www.manara

Standard constructor This one is easy but strangely different from normal function definitions. Let me
show it to you first and then explain it.

point2d::point2d(double x, double y): x_(x), y_(y) {}

The two colons (::) between the repeated point2d is called the scope operator and is exactly the same
operator and syntax that we use for namespaces. A class scope is a bit like a namespace. It tells the compiler
that you are about to define a constructor for point2d, i.e. the special “function’ that tells the compiler how
to create a new object of this type.

The next part, in parentheses, is just a parameter list that tells the compiler what data to expect when it
is asked to create a point2d object.

The single colon is special punctuation for constructors; it tells the compiler that you are going to
provide a list of instructions to initialize the data members of the object. The above syntax tells the compiler
that you want the point2d object that it is constructing to start with x_ containing the value provided by the
parameter called x and y_ to contain the value provided by y.

If I had failed to provide a constructor the compiler would have made one up for me. Allowing the
compiler that much freedom is a poor idea (there are many cases where it will get it badly wrong). Do not
do that unless you know it will get it right (as I do in the case of constructing a new point2d object as a copy
of an existing point2d object).

The final open and close braces just enclose the body of the constructor. As we have already done
everything there is to do, there is nothing to put between them. However the compiler needs the braces even
though there is nothing between them just to reassure it that you have done all you intended to do.

Add the source code for the constructor to your point2d.cpp file and check that this file compiles. If it
does not, correct the typos and try again.

Default constructor We may sometimes want to create point2d objects without supplying data. The
constructor that does this is called a default constructor. In other words we need a constructor with an empty
parameter list. I almost forgot it, but it is not a problem because we can go back and add what is needed. We
are always allowed to add features to a class that we are responsible for.

Add the following line just after the other constructor in the class definition (in the header file):

point2d();

And then add this line to the implementation file:

point2d::point2d():x_(0), y_(0) {}

Effectively that says that any new point2d object created without explicit data will be placed at the
origin, (0, 0), until we change it by providing some other data by using one or more of the write access
functions of point2d. Initializing the object’s data with some fixed values is good practice as it ensures that
the new object is in a useable state (one that will not cause any damage) even when we do not provide any
explicit data. If you do not initialize variables you will get random garbage. Sometimes that garbage will
result in damage if you accidentally try to use it. That kind of thing is called undefined behavior. This could
result in damage to your program or, in theory, other possibly more serious damage. There is a joke among
programmers that undefined behavior can result in the compiler emailing your boss telling him you are
incompetent.

Implementing the Cartesian coordinate functions

I am going to deal with these next because they are very simple functions and will allow us to focus on the
syntax for defining member functions. First the two functions for reading the state of a point2d object:

www.manara

double point2d::x() const {return x_;}
double point2d::y() const {return y_;}

We start with the return type, which must agree with the type declared for the member function in the
definition of the class. Then point2d: : tells the compiler that this is a member function of point2d.

Then we write the function name as supplied in the class definition followed by the parameter list in
parentheses. Finally we provide the body of the function in braces. In these two cases it is very simple, the
body just copies the internally stored values of the x and y coordinates to the user. Note that it copies and
does not let the outsider near the original. If you want to change the object’s data you must use the correct
procedures. As the user’s code cannot depend on assumptions about how data is stored we (as the class
owner/designer) are free to change the internal mechanisms for storing the point’s data at some later date.
For example, if after some experience of using point2d we decide that it would have been better to use polar
coordinates internally, we could make the change, though the above functions would no longer be easy ones
to write. We would have to provide definitions that converted the internal polar coordinate representation to
Cartesian coordinates for external use.

Copy those function definitions into point2d.cpp and compile it. If you accidentally leave out the const
qualifier (the thing that makes it a read-only function), it will not compile. Try it and see the kind of error
messages you get.

Let us now tackle the two functions that change the x and y values. These are also simple apart from the
syntax that allows an object to return a reference to itself. For now, just learn the idiom — whenever you
want to return a reference to an object from a member function write: return *this; as I have done below.

point2d & point2d::x(double new_x){
X_ = new_x;
return *this;

3

point2d & point2d::y(double new_y){
y_ = new_y;
return *this;

When you typed this code in you may have noticed that this changed to blue showing that it is a
keyword of the language. *this is a special expression that always refers to the object calling a member
function; i.e. the object whose name comes before the dot in a call of a member function. Think of it like the
pronoun “‘me’’ in English that always refers to the speaker; *this always refers to the object using a
member function.

Yes, the asterisk has more than one meaning in C++; between two values it is a multiplication sign but
when it precedes a single value, it has a special meaning which we will be looking at in more detail in a
later chapter.

Implementing the polar coordinate functions

These are harder because they call on domain knowledge. Our functions must do real work because they
have to convert from the Cartesian to the polar coordinate system. This is one of those cases where you may
have to trust the “‘expert”. That puts a burden on experts because they have to be worthy of that trust.

Getting the modulus Do you remember Pythagoras’ Theorem? That is what we use to work out a
modulus from the x and y coordinates of a point. We will need to calculate a square root, which means we

need to.use the mathematical functions that are in the C++ Standard Library. To make those available, we
will have to include the <cmath> header with the other headers in point2d.cpp by writing:

#include <cmath>

www.manara

Remember that the standard headers go in angle brackets A
not quotes. The function that calculates a square root
is std: :sqrt.

This is the definition of the modulus () function:

[
double point2d::modulus() const { hypotenuse = /’ :
return std::sqrt(x_*x_ + y_*y); modulus \\’/ 1y
} : |
/’/\ |
, v R
Remember that an asterisk between any X
combination of variables and values is a multiplication :
.. . . argument right
sign in computer programming. So the calculation tells angle

us to multiply x_ by itself (i.e. square it) then add on

the result of multiplying y_ by itself and then return the square root of the result. That is just Pythagoras’
Theorem applied to Cartesian coordinates to get the modulus. The diagram may help you see the relationship
between the modulus and the Cartesian coordinates.

Changing the modulus This is harder but please read my commentary even if you ignore the math part
because there is some programming in there as well. Changing the modulus requires that we rescale our
point. For example, if we treble the modulus we will have to treble the values of x_ and y_. We need to
calculate the ratio of the new modulus to the old one so that we will know what scale factor to use. How can
we get the old modulus? Well we just did it above; we can use that function as part of our solution for
this one.

Here is the source code:

point2d & point2d::modulus(double new_modulus) {
double const old_modulus(modulus());
double const scale(new_modulus/old_modulus);

X_ *= scale;
y_ *= scale;
return *this;

The definition of o1d_modulus tells the compiler to create a doubTe that is not going to be changed
from its initial value (that is the effect of the const) and make the initial value the one it gets by calling the
version of the modulus function that has no parameters. Note the way that moduTus() is itself inside
parentheses. Those outer parentheses are a way of telling the compiler that the program must use the data
inside the parentheses to initialize the variable being defined. In this case that means that a new variable will
be created for local use (inside the block of source code contained in braces) called o1d_modulus and set to
remember the result of calling modulus Q.

ROBERTA

But moduTus () is a member function and you do not have an object and dot before it.

FRANCIS

True, this is a special case. The definition of a member function can call other member functions without the object-dot syntax because the
compiler deduces that you are using the object that called the member function you are defining. It is equivalent to writing
(*this).modulus () and that is what the compiler will treat it as.

www.manara

The second definition also provides a double that is not going to change during its lifetime. This one is
the ratio of the new modulus to the old one. That will give us the scale by which lengths are being changed. If
a variable should not be changed while being used, protect yourself against accidents by declaring it as const.

The next two lines use one of C4++’s special operators for changing the value stored in a variable. *=
means replace the value of the variable on the left side by the result of multiplying its value by the value on
the right (see Appendix B on the CD for similar operators). So if the value of scale is 3, the result would be
to treble the values of x_ and y_. There are a lot of these special assignment operators in C++. They are
useful in that they highlight the places where we are using an old value to calculate a new one.

We already know about the last line. It is the same idiom as I used in the earlier definitions of member
functions that modify an object’s data.

Implementing the argument functions Implementing these two functions relies heavily on domain
knowledge and expertise. If the idea of recalling your knowledge of trigonometry turns you into a pale
shuddering wreck, just accept this code as it is. Programmers need to understand what is reasonable for them
to do and what they should ask someone else to do. This is another part of my motive for using point2d as
an example of defining a new type. It covers a wealth of programming but, at the same time, it emphasizes
that good programming includes asking for help and trusting other specialists.

As I mentioned earlier, C4+ does its trigonometric calculations in radian measure. You will almost
certainly want to work in degrees. At least I do. If you need to convert between degrees and radian measure
use the two functions I described earlier. They are declared in fgw_text.h and reside in namespace fgw. Here
is the function to calculate the argument (in degrees) of a point2d object from the internal representation in
Cartesian coordinates:

double point2d::argument() const {
return fgw::degrees(atan2(y_, x_));

}

Note that std: :atan2 is the C4+ Standard Library function that computes an arc tangent — sometimes
called an inverse tangent. This function is very useful because it copes with all possible pairs of
coordinates, including the case where the x coordinate is zero. Those who remember their school
mathematics may recognize that calculating a tangent involves a division, which would be impossible
(without the use of infinity) if x_ were zero. The atan2() function sidesteps that problem.

Finally we have the function to change the argument, i.e. rotate the point to a new position. We want
to keep the modulus the same and use trigonometry to calculate the new values of x_and y_.

point2d & point2d::argument(double new_argument){
double const mod(modulus());

x_ = mod * cos(fgw::radians(new_argument));
y_ = mod * sin(fgw::radians(new_argument));
return *this;

Youwillneed-tosinclude the fgww=text.h header file for the declaration of radians(). However use the
fully elaborated name because a using directive (using namespace fgw;) may cause ambiguity problems.
Of course you can solve those with fully elaborated names but the cost of that solution (writing using
namespace fgw;iand then prefixing the relevant calls with fgw: :) seems excessive here.

www.manara

Check that all this works by compiling and linking the project. You should get four blocks of four lines
of output if you use the test program I provided.

Wrap-up

In this chapter we have designed and implemented a class. That is not something you should expect to do
any time soon. Even if you just followed the discussion, I hope you got some feel for the kind of work that
goes on deep down in developing libraries for use by others.

Designing a class takes several types of expertise. You need to understand what it is for (far too many
classes are designed with grandiose ideas that are unrelated to the needs of the user). You need to understand
the domain (in this case, mathematics in general and trigonometry in particular). And you need to be
reasonably competent as a programmer. There is no reason that all programmers should be math whizzes,
nor is there any reason to expect a math expert to be a competent programmer, so sometimes you may need
to get two experts to work together with each contributing their own expertise.

Now we have a point2d type let us get on and use it. The complete and tested implementation is in our
graphics library in namespace fgw. That means its full name is fgw: :point2d, which is why you had to be
careful about possible name clashes that could happen if you included my library and wrote a using directive
for my namespace.

It is important that you realize that all the above development of point2d is done in the global
namespace — where things are not in a namespace block. I did it that way so that as you worked through the
code you would not confuse the compiler when it could already see the version in fgwlib.a. If the compiler
gives an ambiguity error, you can use full qualification to make your choice. Simply : : for the global case
and fgw: : for my library’s version.

www.manara

ROBERTA’'S COMMENTS

I found this chapter intimidating and scary, not least because I have forgotten absolutely everything I had ever learnt about
mathematics (which wasn’t much in the first place). So I didn’t really approach this chapter with much confidence. Rather than
just get on with it I moaned and groaned to Francis that I couldn’t see the point of doing something that he had already done for
us nor could I see the relevance to a beginner. In retrospect I wish I had tried it. Because I didn’t pay enough attention to the
first part of this chapter, I struggled with a later chapter.

SOLUTIONS TO EXERCISES

Exercise 1

int main O{
try {
cout << "Please type in a number of degrees. Any value\n"
<< "Targer than ten thousand will end the program: \n";
for(int finished(0); finished != 1;){
double angle(read<double>("Next number: "));
if(angle > 10000.0){
finished = 1;
}
else{
cout << "that is << radians(angle)
<< " radians. \n";

}
}
}
catch(...){
cout << "***There was a problem.***\n";
}

summary
Key programming concepts

» Some programming languages, such as C++, provide tools for the programmer to create new
(data) types.

» An abstract data type (ADT) is a type with public behavior that can be used anywhere, but with the
representation of the data available only to the mechanisms that provide that behavior.

» Types should be designed with a clear understanding of their intended use.

» There is no need to provide behavior for an ADT until there is a use for that behavior.

www.manara

ENDNOTES

vy

Behavior once provided is almost impossible to remove (there will be other code relying on that
behavior) even if the design is faulty.

Adding behavior that does not damage or change existing code is acceptable.

The rules for mathematical programming do not always match those found in mathematics.
Programming sometimes uses mathematical concepts and measures that are different from those in
common use.

C++ checklist

»

»>
»>

C++ supports the ADT concept with a mechanism for creating a new type called a class. The public
behavior of a class is introduced by the pub1i c keyword.

The behavior of a class is provided by member functions that are declared in the public section of a
class. This collection of public declarations is called the public interface.

A C++ class type usually has a private section in which are declared the data members that will be
used to store the details of individual objects of the class type.

Every object has its own data but shares the behavior provided by the member functions of its class.
A class may have private member functions that are used to help with providing the public
behavior but are not themselves useable outside the class.

A class definition is composed of the declarations of the pub11ic and private members. The
definition of a class is closed by a brace followed by a semicolon.

The definitions of member functions are provided in an implementation file and are distinguished
from free functions by prefixing member function names by the class hame and the scope operator.
A constructor is a special function that creates an object of the type that is being defined.
Constructors can be overloaded; there can be more than one way to create a new object of a
particular type.

The compiler will generate the code to create a new object as a copy of an existing one. It will also
generate the code to assign the state of one object to another of the same type. In advanced
programming (but not in this book) it is sometimes necessary to replace the compiler

generated code.

doubTe is a fundamental C++ type. It provides storage for numbers that include a decimal point.
The compiler has built-in rules for converting between double and int. Programmers sometimes
need to know of these conversion rules because they do not exactly match those used in
mathematics. Mathematics rounds to the nearest whole number, C++ (along with most
programming languages) rounds by discarding the fractional part (the part after the decimal point).
The C++ Standard Library provides a number of math functions that are declared in <cmath>.
typedef is a keyword that is used to give an alternative name to an existing type.

Extensions checklist

»

The following functions are declared in f{gw_text.h and are used to convert between degrees and
radian measure:

double degrees(double radians);
double radians(double degrees);

The definition of point2d is provided by including point2d.h.

My library provides three special types of functions for reading data from input. It is important to use
these because they serve three purposes: they handle input failure when using std: : cin; they allow
you to initialize variables directly from input; and they ensure that blank spaces at the end of input

www.manara

lines do not cause difficulty when you subsequently use std: :getT1ine(). The three forms are:

// from std::cin with prompt:
read<required type>("message prompt")

// from std::cin with a default prompt of ": "
read<required type>(Q)

// from an istream without using a prompt
read<required type>(stream object)

ol L) fyl_llsl

www.manara

www.manara

CHAPTER @

You Can Use point2d

In the last chapter you accompanied me as I designed a new type to represent the concept of a point on a
plane. In this chapter I will show you how that simple type greatly extends what you can do. The main focus
of this chapter is developing and using geometric shapes. We will discover that coupling the concept of a
container (for our purposes, std: :vector) with our newly defined point2d provides a great deal of power.
At the end of this chapter I add some detail about handling the origin used by Playpen objects.

Adding Functionality with Free Functions

There are many features that we can add to point2d. However they are not fundamental to the type, they are
just things we can do with it. Experienced programmers avoid cluttering their types with non-essential
member functions. If possible, we use free functions to add functionality.

The ability to display itself in a Playpen is not an inherent property of the point2d type. If we provided
a point2d member function to display the point in a Playpen we would force all users of point2d to include
the baggage of the pTlaypen type into their project even if they were not going to use it (perhaps they wanted
to use some other graphics library). point2d and playpen are entirely independent types and yet it is quite
natural to provide functionality that displays one in the other.

The only function that needs to know about both the pTlaypen and the point2d types is the one that
causes a point to be displayed as a Playpen pixel.

Think of the typical way that you might call a display function. What data will it need? Where should
you provide the functionality? Where should the declaration go? And what about the implementation? What
should we call the function? What data should it have? Will the function need to change the state of one of its
parameters? If so it will have to be a reference parameter? Have we got anything that is close to what we want?

Displaying a point2d object in a Playpen reminds me of plotting a pixel. One of the few member
functions of a playpen is the one that plots a pixel. Does that help? Let me help your thoughts by suggesting
that we keep things simple. When asked to display a point2d object in a Playpen we will plot the nearest
pixel. In other words if a point2d object is holding (2.7, —3.9) we want to plot the pixel at (3, —4). Go
back and check what playpen: :plot() needs. See what is missing? Yes, we need a palette code. I think we
are just about ready to write the function declaration. As we are going to plot a pixel to represent a point2d
object, I think the function should be called pTot. That gives me:

void plot(fgw::playpen &, fgw::point2d, fgw::hue);

www.manara

Not all authorities would agree with me, but I think that this is a case where adding parameter names
in the declaration (remember they are optional) would make the declaration less clear. To me that
declaration shouts loudly that I am going to plot a point2d value on a playpen in a color of my choice.

A typical use will be something like:

plot(paper, apoint, green2+red3);

assuming that paper and apoint are variables for a playpen object and a point2d object, respectively.
How about the definition? This looks about right to me:

void plot(playpen & pp, point2d pt, hue shade){
pp.plot(pt.x(), pt.y(, shade);
}

Basically that code redirects the data of plot to a member function of pTlaypen to do the actual work.
This is a very common programming process; it is called delegation. A function that delegates to another is
often called a forwarding function.

Create a header file for the free functions that add behavior to point2d. Call it point2d_extensions.h.
Remember to put in the inclusion guard. You will need to include playpen.h for the declarations of playpen
and hue and point2d.h for my library’s point2d. We need those things because all those types are used in the
declaration of our plot() function.

Create an implementation file point2d_extensions.cpp and include the corresponding header file (for
now that is the only header file you will need there). Copy the definition of the plot function.

Now try to compile. Barring typos it will compile as long as you have included the necessary header
files. (I think you should now be working those out for yourself.)

T ASK Write and test a function that calculates the distance between two point2d objects. The
declaration will be as follows:

double length(point2d from, point2d to);
(Do not use the more intuitive distance as the function name because the result will
be an unpleasant name clash with a function in namespace std. If you want to experiment

try using distance and see the kind of error messages you get.)
[Hint available for non-mathematicians]

T ASK Write and test a function that calculates the direction of one point2d object from another
one. Use the declaration:

double direction(point2d from, point2d to);

[Hint available for non-mathematicians]

www.manara

sSupporting 1/0 for point2d

We are going to confine ourselves to input and output in the Cartesian coordinate format in this section.
Later we might add versions for the polar coordinate format. If you want you can always add them yourself.
The method would be very similar to that for Cartesian coordinates.

We write Cartesian coordinates for a two-dimensional point by placing the “x’” and “‘y’” values in
parentheses and separating them with a comma, e.g. (3.7, —4.5). It would be good if we could manage to
make our I/0 format conform to that convention.

Writing out a point2d object

Let us consider the output first. I have my own convention of calling functions that are designed to write to
an output stream send_to.
A typical use of send_to for outputting a point2d to a stream would look like this:

send_to(apoint, cout);
The function needs two parameters, what to send and where to send it. The ostream parameter needs

to have access rights to the output because it needs to “‘change’ it by writing out data. That tells me that it
will have to be a reference parameter. A void return type will be fine. I think that gives me the declaration:

void send_to(point2d, ostream &);

Try writing and testing that function for yourself. If you get lost, or want to compare your TA SK
solution with mine, you can find it at the end of this chapter. However please try to do it for
yourself before looking. A small hint, you will need to output five things: two of those will be 10

the coordinates, the rest will make it look right.

Reading in a point2d object

Now let us tackle the hard one, input. You might object on the basis that we have those nice read<
functions. Unfortunately they only work if the type we are interested in has a >> operator to extract data from
an input stream. Unless we write such a function first, we cannot use the read<> functions. I would be selling
you short if I did not draw your attention to the need to supply input functionality before you can use it.

As before, we need two versions, one for console input (where we only need two values and can
dispense with the parentheses and comma) and one for the general input that will include files, etc. and will
need to handle opening and closing parentheses as well as a comma (we need to be able to read in exactly
what we write out). This is tougher because we have to extract and discard the formatting characters. If we
had a function that would search the input stream for the next time a specific character turned up we would
have a good starting point. What I would like to write is:

point2d Getpoint2d(istream & inp) {
Match(inp, '(');
double const x(read<double>(inp));
Match(Cinp, ',');
double const y(read<double>(inp));
Match(inp, ')");

www.manara

return point2d(x, y);
}

In this function you collect the data from the input stream and when all five items have been processed
you create a point2d object that can be copied back via the return value. We need a Match(istream &,
char) function which should use istream’s get () member function to munch through the input data till it
comes to a char in the input that matches the one we provide.

T ASK Write and test aMatch(istream &, char) that does what we want (i.e. skips characters
till it finds one that matches). Use an uppercase “M’’ to avoid getting tangled in name

11 clashes (there is already a match () function in my library). When you implement Match(Q)

note that even get () can fail (if you go off the end of the file, for example) so you should still

test the input stream for failure after each use and deal with failure by throwing an exception.

T ASK Once you have all the bits, write the above Getpoint2d(istream &) function and test it.
Also write a Getpoint2d() version that uses std: : cin. Notice that in this case we can
12 simply ask for two numbers; we do not have to worry about eating up formatting characters.
The average user will not thank us for requiring parentheses and commas.

Using the library versions

Now you have written these functions for yourself you should understand the process well enough to use the
versions provided in my library. The necessary declarations are in point2d.h. match() is not declared there
because it is a more general-purpose function and so is declared in fgw_text.h.

I have also provided a >> operator for point2d (which uses the getpoint2d() functions to make it
work) so you can use the read< functions to extract data from an input stream.

Drawing Lines and Polygons

Now you know about point2d, it is time to introduce you to a function I have written that draws a straight
line from one point to another. It is in the graphics library and its declaration in line_drawing h is:

void drawline(playpen & pp, point2d begin, point2d end, hue);

The details of the implementation of this function are much more complicated than the cases of
drawing vertical and horizontal lines that we had in Chapter 3. Even though I knew how to do it, it still took
me fourattempts.before I.got the Jast-(Lhope) bug out of it. You do not need to know the details of my
implementation of drawline. It behaves like the other line drawing functions in that the actual end point is
not plotted. Remember that that means that switching the start and end points will result in a slightly
different line:I"have designed-it that way because that works best for the way I wish to use it.

www.manara

the first two point2d values it will draw the line between them in the Playpen and then
prompt you for more data and draw a line from the end of the previous line to this new point.
It continues this process until you input a value that signifies that you want to finish. Use any
point whose x-coordinate is greater than 999 as the stop signal. Note that you will still have
to give a y-coordinate.

Write a program that will prompt you for data for point2d objects. After you have given it TASK

Modify the program you wrote for Task 13 so that it stores the inputin a TA SK
vector<point2d>. When you have finished the drawing, open a file called myshape.txt
as an output stream (ofstream object) and first write how many point2d values there are 14

in the container (you will need that number to safely recover the data) and then write out the
point2d values stored in the vector<point2d>. [Hint available]

Write a new program that opens the myshape. txt file as an input stream (i fstream TA SK
object) and then reads the contents into a vector<point2d> container. Remember that
you have to first read in the number of entries as an int so that you can count in the entries 15

and push them into the vector. Finally push_back a copy of the first vertex (if s is the
shape, then s[0] will be the first vertex) so the shape will close. Use the data stored in the
vector<point2d> object to draw the shape in the Playpen.

Referring to a shape type

If you have completed the last three tasks you will have the basis for representing shapes that are made from
straight lines. When you are ready to start designing your own classes (not until you are ready to read a book
explicitly on C++) you could encapsulate the data in a Shape class and then provide suitable behavior for
such a class. For now we will keep things simple and deal with various features on a piecemeal basis.

Create a pair of header and implementation files called shape.h and shape.cpp. And while you are
doing it, it would be good practice to create a file called testshape.cpp where you can create a main that will
test our functions as we add them.

It would be nice to refer to a collection of point2d values as a shape even if we are not yet ready to
create our own type. C++ provides a mechanism for providing alternative names for a type. That is what the
keyword typedef is for. It is important that you recognize that this mechanism only provides another name
and not a new type.

typedef is used to declare a new name for an existing type. The following is an example of such a
declaration which you should add to your shape h file. (You did remember your header guard didn’t you?)

typedef std:ivector<fgw: :point2d> shape;

www.manara

The above declaration makes shape a synonym for std: :vector<fgw: :point2d>. I am using the
declaration to provide something akin to the way we named numbers in Chapter 1 to reduce the use of
magic numbers. In this instance, I am avoiding magic types, i.e. the use of a type with a name that does
not help the reader of our code to understand what it is being used for. Wherever we write shape the
compiler will treat it as if we had written vector<point2d>. Once again the compiler does not care, but
programmers will.

Using typedef is usually a bit of a cheat because it is rare that something we provide via a typedef will
have all the characteristics of the underlying type. For example, we had better not sort the vertices of a shape:
that would almost certainly give us an entirely different shape. But at this stage in your programming it is
better to stick with the simple solution rather than get involved with designing a completely new type.

Drawing a shape

Let us start with a simple function to draw a shape whose vertices are stored in a shape (i.e.
vector<point2d>) object. Here is a function that you can add to your shape files. I am leaving it to you to
separate out the declaration for the header file and the definition for the implementation file. And do not
forget that you will need full qualification of playpen and hue in the header file.

void drawshape(playpen & pp, shape const & s, hue shade){
for(int vertex(0); vertex != (s.size()-1); ++vertex){
drawline(pp, s[vertex], s[vertex+1l], shade);

Try to follow that code through and understand why it is right. Note that as we start at 0, we will reach
the end of the elements of the container when we get to s.size(). However, because the last line will join
the last two points in the collection of vertices stored in the vector<point2d> object we must end the loop
when we reach the last entry.

In case you were wondering, the shape parameter has been qualified with const because the process
of drawing a shape should not change the data that defines it. By adding the const qualification we allow the
compiler to check that we do not accidentally write code that would change the data. It is also needed if we
are to draw shape objects that are themselves marked as const and so not modifiable. The compiler will not
allow us to hand over read-only objects to functions that do not promise not to change them.

You will want some shape data to test that function with. What about that myshape.txt file you created
earlier? A little cut and pasting from the program that reads in that file and you have a good starting point for
developing the test program for shape. This is yet another example of avoiding repetition; reusing what you
already have.

Moving a shape

One of the transformations that can be applied to a shape is translation (or moving the shape). Basically we
want to adjust all the vertices of our shape by adjusting each x and y value in the same way. Though
mathematical experts might want to argue, I am going to represent the amount of that movement with a
point2d variable. The function declaration will look like this:

void moveshape(shape & s, point2d offset);

This time we want to modify the original shape object so we pass it as a reference (the & in the
parameter declaration) but it is not const qualified because we are going to change it.

www.manara

Reference and non-reference parameters

I promised earlier that I would give you an example of why it can matter whether a parameter is a
reference one or not. The various functions that transform a shape are excellent examples of the
importance of a reference parameter. The purpose of these functions is to modify a shape object. In
order to make the modification you need the original so that you can change it.

For example, if you leave out the & in the declaration of moveshape () all your code will still
compile and run. However the shape passed into moveshape () will not have moved. The copy will be
in a different place, but the copy is binned when the function ends. Try writing a program that takes a
shape, displays it with drawshape (), calls moveshape() to move it and then calls drawshape () again.
You should see both the original and the moved version in the Playpen. Now edit out the & from both
the declaration and the definition of drawshape () and recompile and run the program. You should
now see just one shape (or none if you are in disjoint plotting mode).

If you use an & const parameter, the object will not be changed (that is why you added the
const qualification). There is generally no difference in behavior between a non-reference and a const
reference parameter. The difference in this case is purely one of efficiency. We do not want to copy
large objects just to make their data available elsewhere. A const reference makes the object available
but not changeable.

[Hint available]

Implement and test the moveshape Q) function. TA SK
16

Other transformations

As well as moving a shape, we might want to change its size (magnification). For example if we want to
double its size, we need to double the coordinates of each of the vertices.

Rotating might seem a little harder. However I did all the hard work when I ensured that the public
interface of a point2d object could handle polar as well as Cartesian coordinates. Rotating points about the
origin is hard in Cartesian coordinates but very simple in polar ones. For example if we want to rotate a
point2d object 15° anti-clockwise about the origin we add 15 to its argument. To rotate a shape 15° about
the origin rotate each vertex 15° about the origin (i.e. add 15 to the argument of each vertex).

Finally you might wish to distort a shape by stretching (or shrinking) it in only one direction. More
generally you might want to stretch/shrink an object differently in the x and y directions. Actually scaling a
shape is a special case of this where the amount of stretch/shrinkage is the same in both directi